Working async infer

This commit is contained in:
OmriAx 2025-02-27 20:17:20 +02:00
parent ee45f50e09
commit 323e4cec93
2 changed files with 309 additions and 478 deletions

View File

@ -37,6 +37,7 @@ class ModelTypeEnum(str, Enum):
yolox = "yolox"
yolov9 = "yolov9"
yolonas = "yolonas"
hailoyolo = "hailo-yolo"
class ModelConfig(BaseModel):

786
frigate/detectors/plugins/hailo8l.py Normal file → Executable file
View File

@ -2,8 +2,11 @@ import logging
import os
import subprocess
import urllib.request
import numpy as np
import queue
import threading
from functools import partial
from typing import Dict, Optional, List, Tuple
try:
from hailo_platform import (
@ -12,550 +15,377 @@ try:
FormatType,
HailoRTException,
HailoStreamInterface,
InferVStreams,
InputVStreamParams,
OutputVStreamParams,
VDevice,
HailoSchedulingAlgorithm,
)
except ModuleNotFoundError:
pass
from pydantic import BaseModel, Field
from typing_extensions import Literal
from typing import Dict, Optional, List
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum, InputTensorEnum, PixelFormatEnum, InputDTypeEnum
from PIL import Image, ImageDraw, ImageFont
# Setup logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
file_handler = logging.FileHandler('hailo_detector_debug.log')
file_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# ----------------- Inline Utility Functions ----------------- #
def preprocess_image(image: Image.Image, model_w: int, model_h: int) -> Image.Image:
"""
Resize image with unchanged aspect ratio using padding.
"""
img_w, img_h = image.size
scale = min(model_w / img_w, model_h / img_h)
new_img_w, new_img_h = int(img_w * scale), int(img_h * scale)
image = image.resize((new_img_w, new_img_h), Image.Resampling.BICUBIC)
padded_image = Image.new('RGB', (model_w, model_h), (114, 114, 114))
padded_image.paste(image, ((model_w - new_img_w) // 2, (model_h - new_img_h) // 2))
return padded_image
# Define the detector key for Hailo
def extract_detections(input_data: list, threshold: float = 0.5) -> dict:
"""
(Legacy extraction function; not used by detect_raw below.)
Extract detections from raw inference output.
"""
boxes, scores, classes = [], [], []
num_detections = 0
for i, detection in enumerate(input_data):
if len(detection) == 0:
continue
for det in detection:
bbox, score = det[:4], det[4]
if score >= threshold:
boxes.append(bbox)
scores.append(score)
classes.append(i)
num_detections += 1
return {
'detection_boxes': boxes,
'detection_classes': classes,
'detection_scores': scores,
'num_detections': num_detections
}
# ----------------- End of Utility Functions ----------------- #
# Global constants and default URLs
DETECTOR_KEY = "hailo8l"
ARCH = None
H8_DEFAULT_MODEL = "yolov8s.hef"
H8L_DEFAULT_MODEL = "yolov6n.hef"
H8_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov8s.hef"
H8L_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov6n.hef"
def detect_hailo_arch():
try:
# Run the hailortcli command to get device information
result = subprocess.run(['hailortcli', 'fw-control', 'identify'], capture_output=True, text=True)
# Check if the command was successful
if result.returncode != 0:
print(f"Error running hailortcli: {result.stderr}")
return None
# Search for the "Device Architecture" line in the output
for line in result.stdout.split('\n'):
if "Device Architecture" in line:
if "HAILO8L" in line:
return "hailo8l"
elif "HAILO8" in line:
return "hailo8"
print("Could not determine Hailo architecture from device information.")
return None
except Exception as e:
print(f"An error occurred while detecting Hailo architecture: {e}")
return None
# ----------------- Inline Asynchronous Inference Class ----------------- #
class HailoAsyncInference:
def __init__(
self,
hef_path: str,
input_queue: queue.Queue,
output_queue: queue.Queue,
batch_size: int = 1,
input_type: Optional[str] = None,
output_type: Optional[Dict[str, str]] = None,
send_original_frame: bool = False,
) -> None:
self.input_queue = input_queue
self.output_queue = output_queue
# Configuration class for Hailo detector
class HailoDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY] # Type of the detector
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
url: Optional[str] = Field(default=None, title="Custom Model URL")
# Create VDevice parameters with round-robin scheduling
params = VDevice.create_params()
params.scheduling_algorithm = HailoSchedulingAlgorithm.ROUND_ROBIN
# Hailo detector class implementation
# Load HEF and create the infer model
self.hef = HEF(hef_path)
self.target = VDevice(params)
self.infer_model = self.target.create_infer_model(hef_path)
self.infer_model.set_batch_size(batch_size)
if input_type is not None:
self._set_input_type(input_type)
if output_type is not None:
self._set_output_type(output_type)
self.output_type = output_type
self.send_original_frame = send_original_frame
def _set_input_type(self, input_type: Optional[str] = None) -> None:
self.infer_model.input().set_format_type(getattr(FormatType, input_type))
def _set_output_type(self, output_type_dict: Optional[Dict[str, str]] = None) -> None:
for output_name, output_type in output_type_dict.items():
self.infer_model.output(output_name).set_format_type(getattr(FormatType, output_type))
def callback(self, completion_info, bindings_list: List, input_batch: List):
if completion_info.exception:
logging.error(f"Inference error: {completion_info.exception}")
else:
for i, bindings in enumerate(bindings_list):
if len(bindings._output_names) == 1:
result = bindings.output().get_buffer()
else:
result = {
name: np.expand_dims(bindings.output(name).get_buffer(), axis=0)
for name in bindings._output_names
}
self.output_queue.put((input_batch[i], result))
def _create_bindings(self, configured_infer_model) -> object:
if self.output_type is None:
output_buffers = {
output_info.name: np.empty(
self.infer_model.output(output_info.name).shape,
dtype=getattr(np, str(output_info.format.type).split(".")[1].lower())
)
for output_info in self.hef.get_output_vstream_infos()
}
else:
output_buffers = {
name: np.empty(
self.infer_model.output(name).shape,
dtype=getattr(np, self.output_type[name].lower())
)
for name in self.output_type
}
return configured_infer_model.create_bindings(output_buffers=output_buffers)
def get_input_shape(self) -> Tuple[int, ...]:
return self.hef.get_input_vstream_infos()[0].shape
def run(self) -> None:
# Configure the infer model once and reuse vstream settings via run_async
with self.infer_model.configure() as configured_infer_model:
while True:
batch_data = self.input_queue.get()
if batch_data is None:
break # Sentinel to exit loop
if self.send_original_frame:
original_batch, preprocessed_batch = batch_data
else:
preprocessed_batch = batch_data
bindings_list = []
for frame in preprocessed_batch:
bindings = self._create_bindings(configured_infer_model)
bindings.input().set_buffer(np.array(frame))
bindings_list.append(bindings)
configured_infer_model.wait_for_async_ready(timeout_ms=10000)
job = configured_infer_model.run_async(
bindings_list,
partial(
self.callback,
input_batch=original_batch if self.send_original_frame else preprocessed_batch,
bindings_list=bindings_list,
)
)
job.wait(10000) # Wait for the last job to complete
# ----------------- End of Async Class ----------------- #
# ----------------- HailoDetector Class ----------------- #
class HailoDetector(DetectionApi):
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
def __init__(self, detector_config: HailoDetectorConfig):
print(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
logger.info(f"[INIT] Starting HailoDetector initialization with config: {detector_config}")
type_key = DETECTOR_KEY
# Set global ARCH variable
def __init__(self, detector_config: 'HailoDetectorConfig'):
global ARCH
ARCH = detect_hailo_arch()
logger.info(f"[INIT] Detected Hailo architecture: {ARCH}")
self.cache_dir = "/config/model_cache/hailo"
self.device_type = detector_config.device
# Model attributes should be provided in detector_config.model
self.model_path = detector_config.model.path if hasattr(detector_config.model, "path") else None
self.model_height = detector_config.model.height if hasattr(detector_config.model, "height") else None
self.model_width = detector_config.model.width if hasattr(detector_config.model, "width") else None
self.model_type = detector_config.model.model_type if hasattr(detector_config.model, "model_type") else None
self.tensor_format = detector_config.model.input_tensor if hasattr(detector_config.model, "input_tensor") else None
self.pixel_format = detector_config.model.input_pixel_format if hasattr(detector_config.model, "input_pixel_format") else None
self.input_dtype = detector_config.model.input_dtype if hasattr(detector_config.model, "input_dtype") else None
self.url = detector_config.url
self.output_type = "FLOAT32"
self.working_model_path = self.check_and_prepare()
supported_models = [
ModelTypeEnum.ssd,
ModelTypeEnum.yolov9,
ModelTypeEnum.hailoyolo,
]
# Initialize device type and model path from the configuration
self.h8l_device_type = detector_config.device
self.h8l_model_path = detector_config.model.path
self.h8l_model_type = detector_config.model.model_type
# Set configuration based on model type
self.set_correct_config(self.h8l_model_type)
# Override with custom URL if provided
if hasattr(detector_config, "url") and detector_config.url:
self.model_url = detector_config.url
self.expected_model_filename = self.model_url.split('/')[-1]
self.check_and_prepare_model()
# Set up asynchronous inference
self.batch_size = 1
self.input_queue = queue.Queue()
self.output_queue = queue.Queue()
try:
# Validate device type
if self.h8l_device_type not in ["PCIe", "M.2"]:
raise ValueError(f"Unsupported device type: {self.h8l_device_type}")
# Initialize the Hailo device
logger.info("[INIT] Creating VDevice instance")
self.target = VDevice()
# Load the HEF (Hailo's binary format for neural networks)
logger.info(f"[INIT] Loading HEF from {self.h8l_model_path}")
self.hef = HEF(self.h8l_model_path)
# Create configuration parameters from the HEF
logger.info("[INIT] Creating configuration parameters")
self.configure_params = ConfigureParams.create_from_hef(
hef=self.hef, interface=HailoStreamInterface.PCIe
logging.info(f"[INIT] Loading HEF model from {self.working_model_path}")
self.inference_engine = HailoAsyncInference(
self.working_model_path,
self.input_queue,
self.output_queue,
self.batch_size
)
# Configure the device with the HEF
logger.info("[INIT] Configuring device with HEF")
self.network_groups = self.target.configure(self.hef, self.configure_params)
self.network_group = self.network_groups[0]
self.network_group_params = self.network_group.create_params()
# Create input and output virtual stream parameters
logger.info("[INIT] Creating input/output stream parameters")
self.input_vstream_params = InputVStreamParams.make(
self.network_group,
format_type=self.hef.get_input_vstream_infos()[0].format.type,
)
self.output_vstream_params = OutputVStreamParams.make(
self.network_group, format_type=getattr(FormatType, self.output_type)
)
# Get input and output stream information from the HEF
self.input_vstream_info = self.hef.get_input_vstream_infos()
self.output_vstream_info = self.hef.get_output_vstream_infos()
for i, info in enumerate(self.input_vstream_info):
logger.info(f"[INIT] Input Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
for i, info in enumerate(self.output_vstream_info):
logger.info(f"[INIT] Output Stream {i}: Name={info.name}, Format={info.format}, Shape={info.shape}")
logger.info("Hailo device initialized successfully")
except HailoRTException as e:
logger.error(f"HailoRTException during initialization: {e}")
raise
self.input_shape = self.inference_engine.get_input_shape()
logging.info(f"[INIT] Model input shape: {self.input_shape}")
except Exception as e:
logger.error(f"Failed to initialize Hailo device: {e}")
logging.error(f"[INIT] Failed to initialize HailoAsyncInference: {e}")
raise
def set_correct_config(self, modelname):
if modelname == ModelTypeEnum.ssd:
self.h8l_model_height = 300
self.h8l_model_width = 300
self.h8l_tensor_format = InputTensorEnum.nhwc
self.h8l_pixel_format = PixelFormatEnum.rgb
self.h8l_input_dtype = InputDTypeEnum.float
self.cache_dir = "/config/model_cache/h8l_cache"
self.expected_model_filename = "ssd_mobilenet_v1.hef"
self.output_type = "FLOAT32"
if ARCH == "hailo8":
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/ssd_mobilenet_v1.hef"
else:
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/ssd_mobilenet_v1.hef"
@staticmethod
def extract_model_name(path: str = None, url: str = None) -> str:
model_name = None
if path and path.endswith(".hef"):
model_name = os.path.basename(path)
elif url and url.endswith(".hef"):
model_name = os.path.basename(url)
else:
self.h8l_model_height = 640
self.h8l_model_width = 640
self.h8l_tensor_format = InputTensorEnum.nhwc
self.h8l_pixel_format = PixelFormatEnum.rgb # Default to RGB
self.h8l_input_dtype = InputDTypeEnum.int
self.cache_dir = "/config/model_cache/h8l_cache"
self.output_type = "FLOAT32"
print("Model name not found in path or URL. Checking default settings...")
if ARCH == "hailo8":
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov8m.hef"
self.expected_model_filename = "yolov8m.hef"
else:
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov8s.hef"
self.expected_model_filename = "yolov8s.hef"
def check_and_prepare_model(self):
logger.info(f"[CHECK_MODEL] Checking for model at {self.cache_dir}/{self.expected_model_filename}")
# Ensure cache directory exists
model_name = H8_DEFAULT_MODEL
else:
model_name = H8L_DEFAULT_MODEL
print(f"Using default model: {model_name}")
return model_name
@staticmethod
def download_model(url: str, destination: str):
if not url.endswith(".hef"):
raise ValueError("Invalid model URL. Only .hef files are supported.")
try:
urllib.request.urlretrieve(url, destination)
print(f"Downloaded model to {destination}")
except Exception as e:
raise RuntimeError(f"Failed to download model from {url}: {str(e)}")
def check_and_prepare(self) -> str:
if not os.path.exists(self.cache_dir):
logger.info(f"[CHECK_MODEL] Creating cache directory: {self.cache_dir}")
os.makedirs(self.cache_dir)
# Check for the expected model file
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
if not os.path.isfile(model_file_path):
logger.info(f"[CHECK_MODEL] Model not found at {model_file_path}, downloading from {self.model_url}")
urllib.request.urlretrieve(self.model_url, model_file_path)
logger.info(f"[CHECK_MODEL] Model downloaded to {model_file_path}")
else:
logger.info(f"[CHECK_MODEL] Model already exists at {model_file_path}")
self.h8l_model_path = model_file_path
model_name = self.extract_model_name(self.model_path, self.url)
model_path = os.path.join(self.cache_dir, model_name)
if not self.model_path and not self.url:
if os.path.exists(model_path):
print(f"Model found in cache: {model_path}")
return model_path
else:
print(f"Downloading default model: {model_name}")
if ARCH == "hailo8":
self.download_model(H8_DEFAULT_URL, model_path)
else:
self.download_model(H8L_DEFAULT_URL, model_path)
elif self.model_path and self.url:
if os.path.exists(self.model_path):
print(f"Model found at path: {self.model_path}")
return self.model_path
else:
print(f"Model not found at path. Downloading from URL: {self.url}")
self.download_model(self.url, model_path)
elif self.url:
print(f"Downloading model from URL: {self.url}")
self.download_model(self.url, model_path)
elif self.model_path:
if os.path.exists(self.model_path):
print(f"Using existing model at: {self.model_path}")
return self.model_path
else:
raise FileNotFoundError(f"Model file not found at: {self.model_path}")
return model_path
def detect_raw(self, tensor_input):
logger.info("[DETECT_RAW] Starting detection")
logging.info("[DETECT_RAW] Starting detection")
# Ensure tensor_input has a batch dimension
if isinstance(tensor_input, np.ndarray) and len(tensor_input.shape) == 3:
tensor_input = np.expand_dims(tensor_input, axis=0)
logging.info(f"[DETECT_RAW] Expanded input shape to {tensor_input.shape}")
if tensor_input is None:
error_msg = "[DETECT_RAW] The 'tensor_input' argument must be provided"
logger.error(error_msg)
raise ValueError(error_msg)
# Enqueue input and a sentinel value
self.input_queue.put(tensor_input)
self.input_queue.put(None) # Sentinel value
# Log input tensor information
logger.info(f"[DETECT_RAW] Input tensor type: {type(tensor_input)}")
# Run the inference engine
self.inference_engine.run()
result = self.output_queue.get()
if result is None:
logging.error("[DETECT_RAW] No inference result received")
return np.zeros((20, 6), dtype=np.float32)
if isinstance(tensor_input, np.ndarray):
logger.info(f"[DETECT_RAW] Input tensor shape: {tensor_input.shape}")
logger.info(f"[DETECT_RAW] Input tensor dtype: {tensor_input.dtype}")
logger.info(f"[DETECT_RAW] Input tensor min value: {np.min(tensor_input)}")
logger.info(f"[DETECT_RAW] Input tensor max value: {np.max(tensor_input)}")
logger.info(f"[DETECT_RAW] Input tensor mean value: {np.mean(tensor_input)}")
original_input, infer_results = result
logging.info("[DETECT_RAW] Inference completed.")
# Print sample of the tensor (first few elements)
flat_sample = tensor_input.flatten()[:10]
logger.info(f"[DETECT_RAW] Input tensor sample: {flat_sample}")
elif isinstance(tensor_input, list):
logger.info(f"[DETECT_RAW] Input is a list with length: {len(tensor_input)}")
tensor_input = np.array(tensor_input)
logger.info(f"[DETECT_RAW] Converted to array with shape: {tensor_input.shape}, dtype: {tensor_input.dtype}")
elif isinstance(tensor_input, dict):
logger.info(f"[DETECT_RAW] Input is a dictionary with keys: {tensor_input.keys()}")
# If infer_results is a single-element list, unwrap it.
if isinstance(infer_results, list) and len(infer_results) == 1:
infer_results = infer_results[0]
input_data = tensor_input
logger.debug("[DETECT_RAW] Input data prepared for inference")
try:
logger.info("[DETECT_RAW] Creating inference pipeline")
with InferVStreams(
self.network_group,
self.input_vstream_params,
self.output_vstream_params,
) as infer_pipeline:
input_dict = {}
if isinstance(input_data, dict):
logger.info("[DETECT_RAW] Input is already a dictionary, using as-is")
input_dict = input_data
elif isinstance(input_data, (list, tuple)):
logger.info("[DETECT_RAW] Converting list/tuple to dictionary for inference")
for idx, layer_info in enumerate(self.input_vstream_info):
input_dict[layer_info.name] = input_data[idx]
logger.info(f"[DETECT_RAW] Assigned data to input layer '{layer_info.name}'")
else:
if len(input_data.shape) == 3:
logger.info(f"[DETECT_RAW] Adding batch dimension to input with shape {input_data.shape}")
input_data = np.expand_dims(input_data, axis=0)
logger.info(f"[DETECT_RAW] New input shape after adding batch dimension: {input_data.shape}")
input_dict[self.input_vstream_info[0].name] = input_data
logger.info(f"[DETECT_RAW] Assigned data to input layer '{self.input_vstream_info[0].name}'")
logger.info(f"[DETECT_RAW] Final input dictionary keys: {list(input_dict.keys())}")
# Log details about each input layer
for key, value in input_dict.items():
if isinstance(value, np.ndarray):
logger.info(f"[DETECT_RAW] Layer '{key}' has shape: {value.shape}, dtype: {value.dtype}")
logger.info("[DETECT_RAW] Activating network group")
with self.network_group.activate(self.network_group_params):
logger.info("[DETECT_RAW] Running inference")
raw_output = infer_pipeline.infer(input_dict)
logger.info(f"[DETECT_RAW] Inference complete, output keys: {list(raw_output.keys())}")
# Log details about output structure for debugging
for key, value in raw_output.items():
logger.info(f"[DETECT_RAW] Output layer '{key}' details:")
debug_output_structure(value, prefix=" ")
# Process outputs based on model type
if self.h8l_model_type in [ModelTypeEnum.hailoyolo, ModelTypeEnum.yolov9, ModelTypeEnum.yolox, ModelTypeEnum.yolonas]:
logger.info(f"[DETECT_RAW] Processing YOLO-type output for model type: {self.h8l_model_type}")
detections = self.process_yolo_output(raw_output)
else:
# Default to SSD processing
logger.info(f"[DETECT_RAW] Processing SSD output for model type: {self.h8l_model_type}")
expected_output_name = self.output_vstream_info[0].name
if expected_output_name not in raw_output:
error_msg = f"[DETECT_RAW] Missing output stream {expected_output_name} in inference results"
logger.error(error_msg)
return np.zeros((20, 6), np.float32)
detections = self.process_ssd_output(raw_output[expected_output_name])
logger.info(f"[DETECT_RAW] Processed detections shape: {detections.shape}")
return detections
except HailoRTException as e:
logger.error(f"[DETECT_RAW] HailoRTException during inference: {e}")
return np.zeros((20, 6), np.float32)
except Exception as e:
logger.error(f"[DETECT_RAW] Exception during inference: {e}")
return np.zeros((20, 6), np.float32)
finally:
logger.debug("[DETECT_RAW] Exiting function")
def process_yolo_output(self, raw_output):
"""
Process YOLO outputs to match the expected Frigate detection format.
Returns detections in the format [class_id, score, ymin, xmin, ymax, xmax]
"""
logger.info("[PROCESS_YOLO] Processing YOLO output")
# Initialize empty array for our results - match TFLite format
detections = np.zeros((20, 6), np.float32)
try:
# Identify output layers for boxes, classes, and scores
boxes_layer = None
classes_layer = None
scores_layer = None
count_layer = None
# Try to identify layers by name pattern
for key in raw_output.keys():
key_lower = key.lower()
if any(box_term in key_lower for box_term in ['box', 'bbox', 'location']):
boxes_layer = key
elif any(class_term in key_lower for class_term in ['class', 'category', 'label']):
classes_layer = key
elif any(score_term in key_lower for score_term in ['score', 'confidence', 'prob']):
scores_layer = key
elif any(count_term in key_lower for count_term in ['count', 'num', 'detection_count']):
count_layer = key
logger.info(f"[PROCESS_YOLO] Identified layers - Boxes: {boxes_layer}, Classes: {classes_layer}, "
f"Scores: {scores_layer}, Count: {count_layer}")
# If we found all necessary layers
if boxes_layer and classes_layer and scores_layer:
# Extract data from the identified layers
boxes = raw_output[boxes_layer]
class_ids = raw_output[classes_layer]
scores = raw_output[scores_layer]
# If these are lists, extract the first element (batch)
if isinstance(boxes, list) and len(boxes) > 0:
boxes = boxes[0]
if isinstance(class_ids, list) and len(class_ids) > 0:
class_ids = class_ids[0]
if isinstance(scores, list) and len(scores) > 0:
scores = scores[0]
# Get detection count (if available)
count = 0
if count_layer:
count_val = raw_output[count_layer]
if isinstance(count_val, list) and len(count_val) > 0:
count_val = count_val[0]
count = int(count_val[0] if isinstance(count_val, np.ndarray) else count_val)
else:
# Use the length of scores as count
count = len(scores) if hasattr(scores, '__len__') else 0
# Process detections like in the example
for i in range(count):
if i >= 20: # Limit to 20 detections
break
if scores[i] < 0.4: # Use 0.4 threshold as in the example
continue
# Add detection in the format [class_id, score, ymin, xmin, ymax, xmax]
detections[i] = [
float(class_ids[i]),
float(scores[i]),
float(boxes[i][0]), # ymin
float(boxes[i][1]), # xmin
float(boxes[i][2]), # ymax
float(boxes[i][3]), # xmax
]
else:
# Fallback: Try to process output as a combined detection array
logger.info("[PROCESS_YOLO] Couldn't identify separate output layers, trying unified format")
# Look for a detection array in the output
detection_layer = None
for key, value in raw_output.items():
if isinstance(value, list) and len(value) > 0:
if isinstance(value[0], np.ndarray) and value[0].ndim >= 2:
detection_layer = key
break
if detection_layer:
# Get the detection array
detection_array = raw_output[detection_layer]
if isinstance(detection_array, list):
detection_array = detection_array[0] # First batch
# Process each detection
detection_count = 0
for i, detection in enumerate(detection_array):
if detection_count >= 20:
break
# Format depends on YOLO variant but typically includes:
# class_id, score, box coordinates (could be [x,y,w,h] or [xmin,ymin,xmax,ymax])
# Extract elements based on shape
if len(detection) >= 6: # Likely [class_id, score, xmin, ymin, xmax, ymax]
class_id = detection[0]
score = detection[1]
# Check if this is actually [x, y, w, h, conf, class_id]
if score > 1.0: # Score shouldn't be > 1, might be a coordinate
# Reorganize assuming [x, y, w, h, conf, class_id] format
x, y, w, h, confidence, *class_probs = detection
# Get class with highest probability
if len(class_probs) > 1:
class_id = np.argmax(class_probs)
score = confidence * class_probs[class_id]
else:
class_id = class_probs[0]
score = confidence
# Convert [x,y,w,h] to [ymin,xmin,ymax,xmax]
xmin = x - w/2
ymin = y - h/2
xmax = x + w/2
ymax = y + h/2
else:
# Use as is, but verify we have box coordinates
xmin, ymin, xmax, ymax = detection[2:6]
elif len(detection) >= 4: # Might be [class_id, score, xmin, ymin]
class_id = detection[0]
score = detection[1]
# For incomplete boxes, assume zeros
xmin, ymin = detection[2:4]
xmax = xmin + 0.1 # Small default size
ymax = ymin + 0.1
else:
# Skip invalid detections
continue
# Skip low confidence detections
if score < 0.4:
continue
# Add to detection array
detections[detection_count] = [
float(class_id),
float(score),
float(ymin),
float(xmin),
float(ymax),
float(xmax)
]
detection_count += 1
logger.info(f"[PROCESS_YOLO] Processed {np.count_nonzero(detections[:, 1] > 0)} valid detections")
except Exception as e:
logger.error(f"[PROCESS_YOLO] Error processing YOLO output: {e}")
# detections already initialized as zeros
return detections
def process_ssd_output(self, raw_output):
"""
Process SSD MobileNet v1 output with special handling for jagged arrays
"""
logger.info("[PROCESS_SSD] Processing SSD output")
# Initialize empty lists for our results
# Set your threshold (adjust as needed)
threshold = 0.4
all_detections = []
try:
if isinstance(raw_output, list) and len(raw_output) > 0:
# Handle first level of nesting
raw_detections = raw_output[0]
logger.debug(f"[PROCESS_SSD] First level output type: {type(raw_detections)}")
# Loop over the output list (each element corresponds to one output stream)
for idx, detection_set in enumerate(infer_results):
# Skip empty arrays
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
continue
# Process all valid detections
for i, detection_group in enumerate(raw_detections):
# Skip empty arrays or invalid data
if not isinstance(detection_group, np.ndarray):
continue
logging.debug(f"[DETECT_RAW] Processing detection set {idx} with shape {detection_set.shape}")
# For each detection row in the set:
for det in detection_set:
# Expecting at least 5 elements: [ymin, xmin, ymax, xmax, confidence]
if det.shape[0] < 5:
continue
score = float(det[4])
if score < threshold:
continue
# If there is a 6th element, assume it's a class id; otherwise use dummy class 0.
if det.shape[0] >= 6:
cls = int(det[5])
else:
cls = 0
# Append in the order Frigate expects: [class_id, confidence, ymin, xmin, ymax, xmax]
all_detections.append([cls, score, det[0], det[1], det[2], det[3]])
# Skip empty arrays
if detection_group.size == 0:
continue
# If no valid detections were found, return a zero array.
if len(all_detections) == 0:
logging.warning("[DETECT_RAW] No valid detections found.")
return np.zeros((20, 6), dtype=np.float32)
# For the arrays with actual detections
if detection_group.shape[0] > 0:
# Extract the detection data - typical format is (ymin, xmin, ymax, xmax, score)
for j in range(detection_group.shape[0]):
detection = detection_group[j]
detections_array = np.array(all_detections, dtype=np.float32)
# Check if we have 5 values (expected format)
if len(detection) == 5:
ymin, xmin, ymax, xmax, score = detection
class_id = i # Use index as class ID
# Pad or truncate to exactly 20 rows
if detections_array.shape[0] < 20:
pad = np.zeros((20 - detections_array.shape[0], 6), dtype=np.float32)
detections_array = np.vstack((detections_array, pad))
elif detections_array.shape[0] > 20:
detections_array = detections_array[:20, :]
# Add detection if score is reasonable
if 0 <= score <= 1.0 and score > 0.1: # Basic threshold
all_detections.append([float(class_id), float(score),
float(ymin), float(xmin),
float(ymax), float(xmax)])
# Convert to numpy array if we have valid detections
if all_detections:
detections_array = np.array(all_detections, dtype=np.float32)
# Sort by score (descending)
sorted_idx = np.argsort(detections_array[:, 1])[::-1]
detections_array = detections_array[sorted_idx]
# Take top 20 (or fewer if less available)
detections_array = detections_array[:20]
else:
detections_array = np.zeros((0, 6), dtype=np.float32)
except Exception as e:
logger.error(f"[PROCESS_SSD] Error processing SSD output: {e}")
detections_array = np.zeros((0, 6), dtype=np.float32)
# Pad to 20 detections if needed
if len(detections_array) < 20:
padding = np.zeros((20 - len(detections_array), 6), dtype=np.float32)
detections_array = np.vstack((detections_array, padding))
logger.info(f"[PROCESS_SSD] Final output shape: {detections_array.shape}")
logging.info(f"[DETECT_RAW] Processed detections: {detections_array}")
return detections_array
def process_detections(self, raw_detections, threshold=0.5):
"""
Legacy detection processing method, kept for compatibility.
Now redirects to the more robust process_ssd_output method.
"""
logger.info("[PROCESS] Starting to process detections")
logger.info(f"[PROCESS] Using threshold: {threshold}")
# Wrap the raw_detections in a list to match expected format for process_ssd_output
if not isinstance(raw_detections, list):
raw_detections = [raw_detections]
# Process using the more robust method
return self.process_ssd_output(raw_detections)
# Preprocess method using inline utility
def preprocess(self, image):
return preprocess_image(image, self.input_shape[1], self.input_shape[0])
# Close the Hailo device
def close(self):
logger.info("[CLOSE] Closing Hailo device")
logging.info("[CLOSE] Closing HailoDetector")
try:
self.target.close()
logger.info("Hailo device closed successfully")
self.inference_engine.hef.close()
logging.info("Hailo device closed successfully")
except Exception as e:
logger.error(f"Failed to close Hailo device: {e}")
raise
logging.error(f"Failed to close Hailo device: {e}")
raise
# Asynchronous detection wrapper
def async_detect(self, tensor_input, callback):
def detection_thread():
result = self.detect_raw(tensor_input)
callback(result)
thread = threading.Thread(target=detection_thread)
thread.start()
# ----------------- Configuration Class ----------------- #
class HailoDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default="PCIe", title="Device Type")
url: Optional[str] = Field(default=None, title="Custom Model URL")