mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	process detected objects in a queue
This commit is contained in:
		
							parent
							
								
									0f8f8fa3b3
								
							
						
					
					
						commit
						36443980ea
					
				@ -35,7 +35,7 @@ class PreppedQueueProcessor(threading.Thread):
 | 
			
		||||
            self.fps.update()
 | 
			
		||||
            self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
 | 
			
		||||
 | 
			
		||||
            self.cameras[frame['camera_name']].add_objects(frame)
 | 
			
		||||
            self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
 | 
			
		||||
 | 
			
		||||
class RegionRequester(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,7 @@ import threading
 | 
			
		||||
import cv2
 | 
			
		||||
import prctl
 | 
			
		||||
import numpy as np
 | 
			
		||||
from . util import draw_box_with_label
 | 
			
		||||
from . util import draw_box_with_label, LABELS
 | 
			
		||||
 | 
			
		||||
class ObjectCleaner(threading.Thread):
 | 
			
		||||
    def __init__(self, objects_parsed, detected_objects):
 | 
			
		||||
@ -37,6 +37,100 @@ class ObjectCleaner(threading.Thread):
 | 
			
		||||
                with self._objects_parsed:
 | 
			
		||||
                    self._objects_parsed.notify_all()
 | 
			
		||||
 | 
			
		||||
class DetectedObjectsProcessor(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            frame = self.camera.detected_objects_queue.get()
 | 
			
		||||
 | 
			
		||||
            objects = frame['detected_objects']
 | 
			
		||||
 | 
			
		||||
            if len(objects) == 0:
 | 
			
		||||
                return
 | 
			
		||||
 | 
			
		||||
            for raw_obj in objects:
 | 
			
		||||
                obj = {
 | 
			
		||||
                    'score': float(raw_obj.score),
 | 
			
		||||
                    'box': raw_obj.bounding_box.flatten().tolist(),
 | 
			
		||||
                    'name': str(LABELS[raw_obj.label_id]),
 | 
			
		||||
                    'frame_time': frame['frame_time'],
 | 
			
		||||
                    'region_id': frame['region_id']
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                # find the matching region
 | 
			
		||||
                region = self.camera.regions[frame['region_id']]
 | 
			
		||||
 | 
			
		||||
                # Compute some extra properties
 | 
			
		||||
                obj.update({
 | 
			
		||||
                    'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                    'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
                    'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                    'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
 | 
			
		||||
                })
 | 
			
		||||
                
 | 
			
		||||
                # Compute the area
 | 
			
		||||
                obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
 | 
			
		||||
 | 
			
		||||
                object_name = obj['name']
 | 
			
		||||
 | 
			
		||||
                if object_name in region['objects']:
 | 
			
		||||
                    obj_settings = region['objects'][object_name]
 | 
			
		||||
 | 
			
		||||
                    # if the min area is larger than the
 | 
			
		||||
                    # detected object, don't add it to detected objects
 | 
			
		||||
                    if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
                        continue
 | 
			
		||||
                    
 | 
			
		||||
                    # if the detected object is larger than the
 | 
			
		||||
                    # max area, don't add it to detected objects
 | 
			
		||||
                    if obj_settings.get('max_area', region['size']**2) < obj['area']:
 | 
			
		||||
                        continue
 | 
			
		||||
 | 
			
		||||
                    # if the score is lower than the threshold, skip
 | 
			
		||||
                    if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
                        continue
 | 
			
		||||
                
 | 
			
		||||
                    # compute the coordinates of the object and make sure
 | 
			
		||||
                    # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
                    y_location = min(int(obj['ymax']), len(self.mask)-1)
 | 
			
		||||
                    x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
 | 
			
		||||
 | 
			
		||||
                    # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
                    if self.camera.mask[y_location][x_location] == [0]:
 | 
			
		||||
                        continue
 | 
			
		||||
                
 | 
			
		||||
                # look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
 | 
			
		||||
                # if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or 
 | 
			
		||||
                #     (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
 | 
			
		||||
                #     (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
 | 
			
		||||
                #     (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
 | 
			
		||||
 | 
			
		||||
                #     size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
 | 
			
		||||
                    # This triggers WAY too often with stationary objects on the edge of a region. 
 | 
			
		||||
                    # Every frame triggers it and fills the queue...
 | 
			
		||||
                    # I need to create a new region and add it to the list of regions, but 
 | 
			
		||||
                    # it needs to check for a duplicate region first.
 | 
			
		||||
 | 
			
		||||
                    # self.resize_queue.put({
 | 
			
		||||
                    #     'camera_name': self.name,
 | 
			
		||||
                    #     'frame_time': frame['frame_time'],
 | 
			
		||||
                    #     'region_id': frame['region_id'],
 | 
			
		||||
                    #     'size': size,
 | 
			
		||||
                    #     'x_offset': x_offset,
 | 
			
		||||
                    #     'y_offset': y_offset
 | 
			
		||||
                    # })
 | 
			
		||||
                    # print('object too close to region border')
 | 
			
		||||
                    #continue
 | 
			
		||||
 | 
			
		||||
                self.camera.detected_objects.append(obj)
 | 
			
		||||
 | 
			
		||||
            with self.camera.objects_parsed:
 | 
			
		||||
                self.camera.objects_parsed.notify_all()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Maintains the frame and object with the highest score
 | 
			
		||||
class BestFrames(threading.Thread):
 | 
			
		||||
 | 
			
		||||
@ -12,7 +12,7 @@ import prctl
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from . util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
 | 
			
		||||
from . object_detection import RegionPrepper, RegionRequester
 | 
			
		||||
from . objects import ObjectCleaner, BestFrames
 | 
			
		||||
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor
 | 
			
		||||
from . mqtt import MqttObjectPublisher
 | 
			
		||||
 | 
			
		||||
# Stores 2 seconds worth of frames so they can be used for other threads
 | 
			
		||||
@ -145,6 +145,11 @@ class Camera:
 | 
			
		||||
        max_queue_size = len(self.config['regions'])*5
 | 
			
		||||
        self.resize_queue = queue.Queue(max_queue_size)
 | 
			
		||||
 | 
			
		||||
        # Queue for raw detected objects
 | 
			
		||||
        self.detected_objects_queue = queue.Queue()
 | 
			
		||||
        self.detected_objects_processor = DetectedObjectsProcessor(self)
 | 
			
		||||
        self.detected_objects_processor.start()
 | 
			
		||||
        
 | 
			
		||||
        # initialize the frame cache
 | 
			
		||||
        self.cached_frame_with_objects = {
 | 
			
		||||
            'frame_bytes': [],
 | 
			
		||||
@ -259,91 +264,6 @@ class Camera:
 | 
			
		||||
    def get_capture_pid(self):
 | 
			
		||||
        return self.ffmpeg_process.pid
 | 
			
		||||
    
 | 
			
		||||
    def add_objects(self, frame):
 | 
			
		||||
        objects = frame['detected_objects']
 | 
			
		||||
 | 
			
		||||
        if len(objects) == 0:
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        for raw_obj in objects:
 | 
			
		||||
            obj = {
 | 
			
		||||
                'score': float(raw_obj.score),
 | 
			
		||||
                'box': raw_obj.bounding_box.flatten().tolist(),
 | 
			
		||||
                'name': str(LABELS[raw_obj.label_id]),
 | 
			
		||||
                'frame_time': frame['frame_time'],
 | 
			
		||||
                'region_id': frame['region_id']
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            # find the matching region
 | 
			
		||||
            region = self.regions[frame['region_id']]
 | 
			
		||||
 | 
			
		||||
            # Compute some extra properties
 | 
			
		||||
            obj.update({
 | 
			
		||||
                'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
                'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
 | 
			
		||||
            })
 | 
			
		||||
            
 | 
			
		||||
            # Compute the area
 | 
			
		||||
            obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
 | 
			
		||||
 | 
			
		||||
            object_name = obj['name']
 | 
			
		||||
 | 
			
		||||
            if object_name in region['objects']:
 | 
			
		||||
                obj_settings = region['objects'][object_name]
 | 
			
		||||
 | 
			
		||||
                # if the min area is larger than the
 | 
			
		||||
                # detected object, don't add it to detected objects
 | 
			
		||||
                if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                # if the detected object is larger than the
 | 
			
		||||
                # max area, don't add it to detected objects
 | 
			
		||||
                if obj_settings.get('max_area', region['size']**2) < obj['area']:
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                # if the score is lower than the threshold, skip
 | 
			
		||||
                if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
                    continue
 | 
			
		||||
            
 | 
			
		||||
                # compute the coordinates of the object and make sure
 | 
			
		||||
                # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
                y_location = min(int(obj['ymax']), len(self.mask)-1)
 | 
			
		||||
                x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
 | 
			
		||||
 | 
			
		||||
                # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
                if self.mask[y_location][x_location] == [0]:
 | 
			
		||||
                    continue
 | 
			
		||||
            
 | 
			
		||||
            # look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
 | 
			
		||||
            # if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or 
 | 
			
		||||
            #     (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
 | 
			
		||||
            #     (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
 | 
			
		||||
            #     (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
 | 
			
		||||
 | 
			
		||||
            #     size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
 | 
			
		||||
                # This triggers WAY too often with stationary objects on the edge of a region. 
 | 
			
		||||
                # Every frame triggers it and fills the queue...
 | 
			
		||||
                # I need to create a new region and add it to the list of regions, but 
 | 
			
		||||
                # it needs to check for a duplicate region first.
 | 
			
		||||
 | 
			
		||||
                # self.resize_queue.put({
 | 
			
		||||
                #     'camera_name': self.name,
 | 
			
		||||
                #     'frame_time': frame['frame_time'],
 | 
			
		||||
                #     'region_id': frame['region_id'],
 | 
			
		||||
                #     'size': size,
 | 
			
		||||
                #     'x_offset': x_offset,
 | 
			
		||||
                #     'y_offset': y_offset
 | 
			
		||||
                # })
 | 
			
		||||
                # print('object too close to region border')
 | 
			
		||||
                #continue
 | 
			
		||||
 | 
			
		||||
            self.detected_objects.append(obj)
 | 
			
		||||
 | 
			
		||||
        with self.objects_parsed:
 | 
			
		||||
            self.objects_parsed.notify_all()
 | 
			
		||||
    
 | 
			
		||||
    def get_best(self, label):
 | 
			
		||||
        return self.best_frames.best_frames.get(label)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user