Add N100 to OpenVINO examples (#17845)

This commit is contained in:
Nicolas Mowen 2025-04-21 17:03:59 -06:00 committed by GitHub
parent 6936d33172
commit 381225059e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -118,6 +118,7 @@ Inference speeds vary greatly depending on the CPU or GPU used, some known examp
| Intel i3 12000 | | 320: ~ 19 ms 640: ~ 54 ms | | | | Intel i3 12000 | | 320: ~ 19 ms 640: ~ 54 ms | | |
| Intel i5 12600K | ~ 15 ms | 320: ~ 20 ms 640: ~ 46 ms | | | | Intel i5 12600K | ~ 15 ms | 320: ~ 20 ms 640: ~ 46 ms | | |
| Intel i7 12650H | ~ 15 ms | 320: ~ 20 ms 640: ~ 42 ms | 336: 50 ms | | | Intel i7 12650H | ~ 15 ms | 320: ~ 20 ms 640: ~ 42 ms | 336: 50 ms | |
| Intel N100 | ~ 15 ms | 320: ~ 20 ms | | |
| Intel Arc A380 | ~ 6 ms | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | | | Intel Arc A380 | ~ 6 ms | 320: ~ 10 ms 640: ~ 22 ms | 336: 20 ms 448: 27 ms | |
| Intel Arc A750 | ~ 4 ms | 320: ~ 8 ms | | | | Intel Arc A750 | ~ 4 ms | 320: ~ 8 ms | | |
@ -128,7 +129,7 @@ The TensortRT detector is able to run on x86 hosts that have an Nvidia GPU which
Inference speeds will vary greatly depending on the GPU and the model used. Inference speeds will vary greatly depending on the GPU and the model used.
`tiny` variants are faster than the equivalent non-tiny model, some known examples are below: `tiny` variants are faster than the equivalent non-tiny model, some known examples are below:
| Name | YoloV7 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time | | Name | YOLOv7 Inference Time | YOLO-NAS Inference Time | RF-DETR Inference Time |
| --------------- | --------------------- | ------------------------- | ------------------------- | | --------------- | --------------------- | ------------------------- | ------------------------- |
| GTX 1060 6GB | ~ 7 ms | | | | GTX 1060 6GB | ~ 7 ms | | |
| GTX 1070 | ~ 6 ms | | | | GTX 1070 | ~ 6 ms | | |
@ -143,7 +144,7 @@ Inference speeds will vary greatly depending on the GPU and the model used.
With the [rocm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs. With the [rocm](../configuration/object_detectors.md#amdrocm-gpu-detector) detector Frigate can take advantage of many discrete AMD GPUs.
| Name | YoloV9 Inference Time | YOLO-NAS Inference Time | | Name | YOLOv9 Inference Time | YOLO-NAS Inference Time |
| --------------- | --------------------- | ------------------------- | | --------------- | --------------------- | ------------------------- |
| AMD 780M | ~ 14 ms | 320: ~ 30 ms 640: ~ 60 ms | | AMD 780M | ~ 14 ms | 320: ~ 30 ms 640: ~ 60 ms |