mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-06-13 01:16:53 +02:00
Dynamic attributes config (#14035)
* Add config for attribute map and generate all labels from the map * Update docs * Formatting * Use the dynamic label map * Fix check * Fix docs typo
This commit is contained in:
parent
7da44115d3
commit
38d398c967
@ -138,6 +138,16 @@ model:
|
|||||||
# Optional: Label name modifications. These are merged into the standard labelmap.
|
# Optional: Label name modifications. These are merged into the standard labelmap.
|
||||||
labelmap:
|
labelmap:
|
||||||
2: vehicle
|
2: vehicle
|
||||||
|
# Optional: Map of object labels to their attribute labels (default: depends on model)
|
||||||
|
attributes_map:
|
||||||
|
person:
|
||||||
|
- amazon
|
||||||
|
- face
|
||||||
|
car:
|
||||||
|
- amazon
|
||||||
|
- fedex
|
||||||
|
- license_plate
|
||||||
|
- ups
|
||||||
|
|
||||||
# Optional: Audio Events Configuration
|
# Optional: Audio Events Configuration
|
||||||
# NOTE: Can be overridden at the camera level
|
# NOTE: Can be overridden at the camera level
|
||||||
|
@ -25,7 +25,6 @@ from ruamel.yaml import YAML
|
|||||||
from typing_extensions import Self
|
from typing_extensions import Self
|
||||||
|
|
||||||
from frigate.const import (
|
from frigate.const import (
|
||||||
ALL_ATTRIBUTE_LABELS,
|
|
||||||
AUDIO_MIN_CONFIDENCE,
|
AUDIO_MIN_CONFIDENCE,
|
||||||
CACHE_DIR,
|
CACHE_DIR,
|
||||||
CACHE_SEGMENT_FORMAT,
|
CACHE_SEGMENT_FORMAT,
|
||||||
@ -1566,7 +1565,7 @@ class FrigateConfig(FrigateBaseModel):
|
|||||||
self.notifications.enabled_in_config = self.notifications.enabled
|
self.notifications.enabled_in_config = self.notifications.enabled
|
||||||
|
|
||||||
# set default min_score for object attributes
|
# set default min_score for object attributes
|
||||||
for attribute in ALL_ATTRIBUTE_LABELS:
|
for attribute in self.model.all_attributes:
|
||||||
if not self.objects.filters.get(attribute):
|
if not self.objects.filters.get(attribute):
|
||||||
self.objects.filters[attribute] = FilterConfig(min_score=0.7)
|
self.objects.filters[attribute] = FilterConfig(min_score=0.7)
|
||||||
elif self.objects.filters[attribute].min_score == 0.5:
|
elif self.objects.filters[attribute].min_score == 0.5:
|
||||||
|
@ -15,13 +15,10 @@ PLUS_API_HOST = "https://api.frigate.video"
|
|||||||
|
|
||||||
# Attribute & Object constants
|
# Attribute & Object constants
|
||||||
|
|
||||||
ATTRIBUTE_LABEL_MAP = {
|
DEFAULT_ATTRIBUTE_LABEL_MAP = {
|
||||||
"person": ["face", "amazon"],
|
"person": ["amazon", "face"],
|
||||||
"car": ["ups", "fedex", "amazon", "license_plate"],
|
"car": ["amazon", "fedex", "license_plate", "ups"],
|
||||||
}
|
}
|
||||||
ALL_ATTRIBUTE_LABELS = [
|
|
||||||
item for sublist in ATTRIBUTE_LABEL_MAP.values() for item in sublist
|
|
||||||
]
|
|
||||||
LABEL_CONSOLIDATION_MAP = {
|
LABEL_CONSOLIDATION_MAP = {
|
||||||
"car": 0.8,
|
"car": 0.8,
|
||||||
"face": 0.5,
|
"face": 0.5,
|
||||||
|
@ -9,6 +9,7 @@ import requests
|
|||||||
from pydantic import BaseModel, ConfigDict, Field
|
from pydantic import BaseModel, ConfigDict, Field
|
||||||
from pydantic.fields import PrivateAttr
|
from pydantic.fields import PrivateAttr
|
||||||
|
|
||||||
|
from frigate.const import DEFAULT_ATTRIBUTE_LABEL_MAP
|
||||||
from frigate.plus import PlusApi
|
from frigate.plus import PlusApi
|
||||||
from frigate.util.builtin import generate_color_palette, load_labels
|
from frigate.util.builtin import generate_color_palette, load_labels
|
||||||
|
|
||||||
@ -42,6 +43,10 @@ class ModelConfig(BaseModel):
|
|||||||
labelmap: Dict[int, str] = Field(
|
labelmap: Dict[int, str] = Field(
|
||||||
default_factory=dict, title="Labelmap customization."
|
default_factory=dict, title="Labelmap customization."
|
||||||
)
|
)
|
||||||
|
attributes_map: Dict[str, list[str]] = Field(
|
||||||
|
default=DEFAULT_ATTRIBUTE_LABEL_MAP,
|
||||||
|
title="Map of object labels to their attribute labels.",
|
||||||
|
)
|
||||||
input_tensor: InputTensorEnum = Field(
|
input_tensor: InputTensorEnum = Field(
|
||||||
default=InputTensorEnum.nhwc, title="Model Input Tensor Shape"
|
default=InputTensorEnum.nhwc, title="Model Input Tensor Shape"
|
||||||
)
|
)
|
||||||
@ -53,6 +58,7 @@ class ModelConfig(BaseModel):
|
|||||||
)
|
)
|
||||||
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
|
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
|
||||||
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
|
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
|
||||||
|
_all_attributes: list[str] = PrivateAttr()
|
||||||
_model_hash: str = PrivateAttr()
|
_model_hash: str = PrivateAttr()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -63,6 +69,10 @@ class ModelConfig(BaseModel):
|
|||||||
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
|
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
|
||||||
return self._colormap
|
return self._colormap
|
||||||
|
|
||||||
|
@property
|
||||||
|
def all_attributes(self) -> list[str]:
|
||||||
|
return self._all_attributes
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def model_hash(self) -> str:
|
def model_hash(self) -> str:
|
||||||
return self._model_hash
|
return self._model_hash
|
||||||
@ -76,6 +86,14 @@ class ModelConfig(BaseModel):
|
|||||||
}
|
}
|
||||||
self._colormap = {}
|
self._colormap = {}
|
||||||
|
|
||||||
|
# generate list of attribute labels
|
||||||
|
unique_attributes = set()
|
||||||
|
|
||||||
|
for attributes in self.attributes_map.values():
|
||||||
|
unique_attributes.update(attributes)
|
||||||
|
|
||||||
|
self._all_attributes = list(unique_attributes)
|
||||||
|
|
||||||
def check_and_load_plus_model(
|
def check_and_load_plus_model(
|
||||||
self, plus_api: PlusApi, detector: str = None
|
self, plus_api: PlusApi, detector: str = None
|
||||||
) -> None:
|
) -> None:
|
||||||
@ -100,7 +118,7 @@ class ModelConfig(BaseModel):
|
|||||||
json.dump(model_info, f)
|
json.dump(model_info, f)
|
||||||
else:
|
else:
|
||||||
with open(model_info_path, "r") as f:
|
with open(model_info_path, "r") as f:
|
||||||
model_info = json.load(f)
|
model_info: dict[str, any] = json.load(f)
|
||||||
|
|
||||||
if detector and detector not in model_info["supportedDetectors"]:
|
if detector and detector not in model_info["supportedDetectors"]:
|
||||||
raise ValueError(f"Model does not support detector type of {detector}")
|
raise ValueError(f"Model does not support detector type of {detector}")
|
||||||
@ -110,6 +128,19 @@ class ModelConfig(BaseModel):
|
|||||||
self.input_tensor = model_info["inputShape"]
|
self.input_tensor = model_info["inputShape"]
|
||||||
self.input_pixel_format = model_info["pixelFormat"]
|
self.input_pixel_format = model_info["pixelFormat"]
|
||||||
self.model_type = model_info["type"]
|
self.model_type = model_info["type"]
|
||||||
|
|
||||||
|
# generate list of attribute labels
|
||||||
|
self.attributes_map = {
|
||||||
|
**model_info.get("attributes", DEFAULT_ATTRIBUTE_LABEL_MAP),
|
||||||
|
**self.attributes_map,
|
||||||
|
}
|
||||||
|
unique_attributes = set()
|
||||||
|
|
||||||
|
for attributes in self.attributes_map.values():
|
||||||
|
unique_attributes.update(attributes)
|
||||||
|
|
||||||
|
self._all_attributes = list(unique_attributes)
|
||||||
|
|
||||||
self._merged_labelmap = {
|
self._merged_labelmap = {
|
||||||
**{int(key): val for key, val in model_info["labelMap"].items()},
|
**{int(key): val for key, val in model_info["labelMap"].items()},
|
||||||
**self.labelmap,
|
**self.labelmap,
|
||||||
|
@ -25,7 +25,7 @@ from frigate.config import (
|
|||||||
SnapshotsConfig,
|
SnapshotsConfig,
|
||||||
ZoomingModeEnum,
|
ZoomingModeEnum,
|
||||||
)
|
)
|
||||||
from frigate.const import ALL_ATTRIBUTE_LABELS, CLIPS_DIR, UPDATE_CAMERA_ACTIVITY
|
from frigate.const import CLIPS_DIR, UPDATE_CAMERA_ACTIVITY
|
||||||
from frigate.events.types import EventStateEnum, EventTypeEnum
|
from frigate.events.types import EventStateEnum, EventTypeEnum
|
||||||
from frigate.ptz.autotrack import PtzAutoTrackerThread
|
from frigate.ptz.autotrack import PtzAutoTrackerThread
|
||||||
from frigate.util.image import (
|
from frigate.util.image import (
|
||||||
@ -752,7 +752,10 @@ class CameraState:
|
|||||||
sub_label = None
|
sub_label = None
|
||||||
|
|
||||||
if obj.obj_data.get("sub_label"):
|
if obj.obj_data.get("sub_label"):
|
||||||
if obj.obj_data.get("sub_label")[0] in ALL_ATTRIBUTE_LABELS:
|
if (
|
||||||
|
obj.obj_data.get("sub_label")[0]
|
||||||
|
in self.config.model.all_attributes
|
||||||
|
):
|
||||||
label = obj.obj_data["sub_label"][0]
|
label = obj.obj_data["sub_label"][0]
|
||||||
else:
|
else:
|
||||||
label = f"{object_type}-verified"
|
label = f"{object_type}-verified"
|
||||||
|
@ -20,7 +20,6 @@ from frigate.comms.detections_updater import DetectionSubscriber, DetectionTypeE
|
|||||||
from frigate.comms.inter_process import InterProcessRequestor
|
from frigate.comms.inter_process import InterProcessRequestor
|
||||||
from frigate.config import CameraConfig, FrigateConfig
|
from frigate.config import CameraConfig, FrigateConfig
|
||||||
from frigate.const import (
|
from frigate.const import (
|
||||||
ALL_ATTRIBUTE_LABELS,
|
|
||||||
CLEAR_ONGOING_REVIEW_SEGMENTS,
|
CLEAR_ONGOING_REVIEW_SEGMENTS,
|
||||||
CLIPS_DIR,
|
CLIPS_DIR,
|
||||||
UPSERT_REVIEW_SEGMENT,
|
UPSERT_REVIEW_SEGMENT,
|
||||||
@ -153,6 +152,8 @@ class ReviewSegmentMaintainer(threading.Thread):
|
|||||||
self.active_review_segments: dict[str, Optional[PendingReviewSegment]] = {}
|
self.active_review_segments: dict[str, Optional[PendingReviewSegment]] = {}
|
||||||
self.frame_manager = SharedMemoryFrameManager()
|
self.frame_manager = SharedMemoryFrameManager()
|
||||||
|
|
||||||
|
logger.error(f"All attributes are {config.model.all_attributes}")
|
||||||
|
|
||||||
# create communication for review segments
|
# create communication for review segments
|
||||||
self.requestor = InterProcessRequestor()
|
self.requestor = InterProcessRequestor()
|
||||||
self.config_subscriber = ConfigSubscriber("config/record/")
|
self.config_subscriber = ConfigSubscriber("config/record/")
|
||||||
@ -253,7 +254,7 @@ class ReviewSegmentMaintainer(threading.Thread):
|
|||||||
for object in active_objects:
|
for object in active_objects:
|
||||||
if not object["sub_label"]:
|
if not object["sub_label"]:
|
||||||
segment.detections[object["id"]] = object["label"]
|
segment.detections[object["id"]] = object["label"]
|
||||||
elif object["sub_label"][0] in ALL_ATTRIBUTE_LABELS:
|
elif object["sub_label"][0] in self.config.model.all_attributes:
|
||||||
segment.detections[object["id"]] = object["sub_label"][0]
|
segment.detections[object["id"]] = object["sub_label"][0]
|
||||||
else:
|
else:
|
||||||
segment.detections[object["id"]] = f'{object["label"]}-verified'
|
segment.detections[object["id"]] = f'{object["label"]}-verified'
|
||||||
@ -347,7 +348,7 @@ class ReviewSegmentMaintainer(threading.Thread):
|
|||||||
for object in active_objects:
|
for object in active_objects:
|
||||||
if not object["sub_label"]:
|
if not object["sub_label"]:
|
||||||
detections[object["id"]] = object["label"]
|
detections[object["id"]] = object["label"]
|
||||||
elif object["sub_label"][0] in ALL_ATTRIBUTE_LABELS:
|
elif object["sub_label"][0] in self.config.model.all_attributes:
|
||||||
detections[object["id"]] = object["sub_label"][0]
|
detections[object["id"]] = object["sub_label"][0]
|
||||||
else:
|
else:
|
||||||
detections[object["id"]] = f'{object["label"]}-verified'
|
detections[object["id"]] = f'{object["label"]}-verified'
|
||||||
|
@ -16,8 +16,6 @@ from frigate.comms.config_updater import ConfigSubscriber
|
|||||||
from frigate.comms.inter_process import InterProcessRequestor
|
from frigate.comms.inter_process import InterProcessRequestor
|
||||||
from frigate.config import CameraConfig, DetectConfig, ModelConfig
|
from frigate.config import CameraConfig, DetectConfig, ModelConfig
|
||||||
from frigate.const import (
|
from frigate.const import (
|
||||||
ALL_ATTRIBUTE_LABELS,
|
|
||||||
ATTRIBUTE_LABEL_MAP,
|
|
||||||
CACHE_DIR,
|
CACHE_DIR,
|
||||||
CACHE_SEGMENT_FORMAT,
|
CACHE_SEGMENT_FORMAT,
|
||||||
REQUEST_REGION_GRID,
|
REQUEST_REGION_GRID,
|
||||||
@ -727,7 +725,7 @@ def process_frames(
|
|||||||
tracked_detections = [
|
tracked_detections = [
|
||||||
d
|
d
|
||||||
for d in consolidated_detections
|
for d in consolidated_detections
|
||||||
if d[0] not in ALL_ATTRIBUTE_LABELS
|
if d[0] not in model_config.all_attributes
|
||||||
]
|
]
|
||||||
# now that we have refined our detections, we need to track objects
|
# now that we have refined our detections, we need to track objects
|
||||||
object_tracker.match_and_update(frame_time, tracked_detections)
|
object_tracker.match_and_update(frame_time, tracked_detections)
|
||||||
@ -737,7 +735,7 @@ def process_frames(
|
|||||||
|
|
||||||
# group the attribute detections based on what label they apply to
|
# group the attribute detections based on what label they apply to
|
||||||
attribute_detections = {}
|
attribute_detections = {}
|
||||||
for label, attribute_labels in ATTRIBUTE_LABEL_MAP.items():
|
for label, attribute_labels in model_config.attributes_map.items():
|
||||||
attribute_detections[label] = [
|
attribute_detections[label] = [
|
||||||
d for d in consolidated_detections if d[0] in attribute_labels
|
d for d in consolidated_detections if d[0] in attribute_labels
|
||||||
]
|
]
|
||||||
|
Loading…
Reference in New Issue
Block a user