mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	Use a rolling average of iou to determine if an object is no longer stationary (#9381)
* Use a rolling average of iou to determine if an object is no longer stationary * Use different box variation to designate when an object is stationary on debug * In progress * Use average of boxes instead of average of iou * Update frigate/track/norfair_tracker.py Co-authored-by: Blake Blackshear <blake@frigate.video> --------- Co-authored-by: Blake Blackshear <blake@frigate.video>
This commit is contained in:
		
							parent
							
								
									0a15ef022b
								
							
						
					
					
						commit
						3f1bd891e4
					
				@ -489,6 +489,10 @@ class CameraState:
 | 
			
		||||
            # draw the bounding boxes on the frame
 | 
			
		||||
            for obj in tracked_objects.values():
 | 
			
		||||
                if obj["frame_time"] == frame_time:
 | 
			
		||||
                    if obj["stationary"]:
 | 
			
		||||
                        color = (220, 220, 220)
 | 
			
		||||
                        thickness = 1
 | 
			
		||||
                    else:
 | 
			
		||||
                        thickness = 2
 | 
			
		||||
                        color = self.config.model.colormap[obj["label"]]
 | 
			
		||||
                else:
 | 
			
		||||
 | 
			
		||||
@ -17,10 +17,15 @@ from frigate.ptz.autotrack import PtzMotionEstimator
 | 
			
		||||
from frigate.track import ObjectTracker
 | 
			
		||||
from frigate.types import PTZMetricsTypes
 | 
			
		||||
from frigate.util.image import intersection_over_union
 | 
			
		||||
from frigate.util.object import average_boxes
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
THRESHOLD_STATIONARY_IOU_AVERAGE = 0.6
 | 
			
		||||
MAX_STATIONARY_HISTORY = 10
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Normalizes distance from estimate relative to object size
 | 
			
		||||
# Other ideas:
 | 
			
		||||
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
 | 
			
		||||
@ -74,6 +79,7 @@ class NorfairTracker(ObjectTracker):
 | 
			
		||||
        self.untracked_object_boxes: list[list[int]] = []
 | 
			
		||||
        self.disappeared = {}
 | 
			
		||||
        self.positions = {}
 | 
			
		||||
        self.stationary_box_history: dict[str, list[list[int, int, int, int]]] = {}
 | 
			
		||||
        self.camera_config = config
 | 
			
		||||
        self.detect_config = config.detect
 | 
			
		||||
        self.ptz_metrics = ptz_metrics
 | 
			
		||||
@ -127,6 +133,7 @@ class NorfairTracker(ObjectTracker):
 | 
			
		||||
            "xmax": self.detect_config.width,
 | 
			
		||||
            "ymax": self.detect_config.height,
 | 
			
		||||
        }
 | 
			
		||||
        self.stationary_box_history[id] = []
 | 
			
		||||
 | 
			
		||||
    def deregister(self, id, track_id):
 | 
			
		||||
        del self.tracked_objects[id]
 | 
			
		||||
@ -138,22 +145,24 @@ class NorfairTracker(ObjectTracker):
 | 
			
		||||
 | 
			
		||||
    # tracks the current position of the object based on the last N bounding boxes
 | 
			
		||||
    # returns False if the object has moved outside its previous position
 | 
			
		||||
    def update_position(self, id, box):
 | 
			
		||||
    def update_position(self, id: str, box: list[int, int, int, int]):
 | 
			
		||||
        position = self.positions[id]
 | 
			
		||||
        position_box = (
 | 
			
		||||
            position["xmin"],
 | 
			
		||||
            position["ymin"],
 | 
			
		||||
            position["xmax"],
 | 
			
		||||
            position["ymax"],
 | 
			
		||||
        self.stationary_box_history[id].append(box)
 | 
			
		||||
 | 
			
		||||
        if len(self.stationary_box_history[id]) > MAX_STATIONARY_HISTORY:
 | 
			
		||||
            self.stationary_box_history[id] = self.stationary_box_history[id][
 | 
			
		||||
                -MAX_STATIONARY_HISTORY:
 | 
			
		||||
            ]
 | 
			
		||||
 | 
			
		||||
        avg_iou = intersection_over_union(
 | 
			
		||||
            box, average_boxes(self.stationary_box_history[id])
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        xmin, ymin, xmax, ymax = box
 | 
			
		||||
 | 
			
		||||
        iou = intersection_over_union(position_box, box)
 | 
			
		||||
 | 
			
		||||
        # if the iou drops below the threshold
 | 
			
		||||
        # assume the object has moved to a new position and reset the computed box
 | 
			
		||||
        if iou < 0.6:
 | 
			
		||||
        if avg_iou < THRESHOLD_STATIONARY_IOU_AVERAGE:
 | 
			
		||||
            self.positions[id] = {
 | 
			
		||||
                "xmins": [xmin],
 | 
			
		||||
                "ymins": [ymin],
 | 
			
		||||
@ -220,6 +229,7 @@ class NorfairTracker(ObjectTracker):
 | 
			
		||||
            ):
 | 
			
		||||
                self.tracked_objects[id]["position_changes"] += 1
 | 
			
		||||
            self.tracked_objects[id]["motionless_count"] = 0
 | 
			
		||||
            self.stationary_box_history[id] = []
 | 
			
		||||
 | 
			
		||||
        self.tracked_objects[id].update(obj)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -323,6 +323,22 @@ def reduce_boxes(boxes, iou_threshold=0.0):
 | 
			
		||||
    return [tuple(c) for c in clusters]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def average_boxes(boxes: list[list[int, int, int, int]]) -> list[int, int, int, int]:
 | 
			
		||||
    """Return a box that is the average of a list of boxes."""
 | 
			
		||||
    x_mins = []
 | 
			
		||||
    y_mins = []
 | 
			
		||||
    x_max = []
 | 
			
		||||
    y_max = []
 | 
			
		||||
 | 
			
		||||
    for box in boxes:
 | 
			
		||||
        x_mins.append(box[0])
 | 
			
		||||
        y_mins.append(box[1])
 | 
			
		||||
        x_max.append(box[2])
 | 
			
		||||
        y_max.append(box[3])
 | 
			
		||||
 | 
			
		||||
    return [np.mean(x_mins), np.mean(y_mins), np.mean(x_max), np.mean(y_max)]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def intersects_any(box_a, boxes):
 | 
			
		||||
    for box in boxes:
 | 
			
		||||
        if box_overlaps(box_a, box):
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user