mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	working dynamic regions, but messy
This commit is contained in:
		
							parent
							
								
									36443980ea
								
							
						
					
					
						commit
						48b3f22866
					
				@ -101,7 +101,8 @@ RUN  pip install -U pip \
 | 
			
		||||
 Flask \
 | 
			
		||||
 paho-mqtt \
 | 
			
		||||
 PyYAML \
 | 
			
		||||
 matplotlib
 | 
			
		||||
 matplotlib \
 | 
			
		||||
 scipy
 | 
			
		||||
 | 
			
		||||
WORKDIR /opt/frigate/
 | 
			
		||||
ADD frigate frigate/
 | 
			
		||||
 | 
			
		||||
@ -3,6 +3,7 @@ import cv2
 | 
			
		||||
import threading
 | 
			
		||||
import prctl
 | 
			
		||||
from collections import Counter, defaultdict
 | 
			
		||||
import itertools
 | 
			
		||||
 | 
			
		||||
class MqttObjectPublisher(threading.Thread):
 | 
			
		||||
    def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
 | 
			
		||||
@ -26,7 +27,7 @@ class MqttObjectPublisher(threading.Thread):
 | 
			
		||||
 | 
			
		||||
            # total up all scores by object type
 | 
			
		||||
            obj_counter = Counter()
 | 
			
		||||
            for obj in detected_objects:
 | 
			
		||||
            for obj in itertools.chain.from_iterable(detected_objects.values()):
 | 
			
		||||
                obj_counter[obj['name']] += obj['score']
 | 
			
		||||
            
 | 
			
		||||
            # report on detected objects
 | 
			
		||||
 | 
			
		||||
@ -31,7 +31,7 @@ class PreppedQueueProcessor(threading.Thread):
 | 
			
		||||
            frame = self.prepped_frame_queue.get()
 | 
			
		||||
 | 
			
		||||
            # Actual detection.
 | 
			
		||||
            frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
 | 
			
		||||
            frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.4, top_k=5)
 | 
			
		||||
            self.fps.update()
 | 
			
		||||
            self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
 | 
			
		||||
 | 
			
		||||
@ -56,8 +56,10 @@ class RegionRequester(threading.Thread):
 | 
			
		||||
            # make a copy of the frame_time
 | 
			
		||||
            frame_time = self.camera.frame_time.value
 | 
			
		||||
 | 
			
		||||
            with self.camera.regions_in_process_lock:
 | 
			
		||||
                self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
 | 
			
		||||
 | 
			
		||||
            for index, region in enumerate(self.camera.config['regions']):
 | 
			
		||||
                # queue with priority 1
 | 
			
		||||
                self.camera.resize_queue.put({
 | 
			
		||||
                    'camera_name': self.camera.name,
 | 
			
		||||
                    'frame_time': frame_time,
 | 
			
		||||
@ -91,11 +93,11 @@ class RegionPrepper(threading.Thread):
 | 
			
		||||
 | 
			
		||||
            # Resize to 300x300 if needed
 | 
			
		||||
            if cropped_frame.shape != (300, 300, 3):
 | 
			
		||||
                # TODO: use Pillow-SIMD?
 | 
			
		||||
                cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
 | 
			
		||||
            # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
 | 
			
		||||
            frame_expanded = np.expand_dims(cropped_frame, axis=0)
 | 
			
		||||
 | 
			
		||||
            # add the frame to the queue
 | 
			
		||||
            if not self.prepped_frame_queue.full():
 | 
			
		||||
                resize_request['frame'] = frame_expanded.flatten().copy()
 | 
			
		||||
                self.prepped_frame_queue.put(resize_request)
 | 
			
		||||
            resize_request['frame'] = frame_expanded.flatten().copy()
 | 
			
		||||
            self.prepped_frame_queue.put(resize_request)
 | 
			
		||||
@ -3,8 +3,10 @@ import datetime
 | 
			
		||||
import threading
 | 
			
		||||
import cv2
 | 
			
		||||
import prctl
 | 
			
		||||
import itertools
 | 
			
		||||
import numpy as np
 | 
			
		||||
from . util import draw_box_with_label, LABELS
 | 
			
		||||
from scipy.spatial import distance as dist
 | 
			
		||||
from . util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
 | 
			
		||||
 | 
			
		||||
class ObjectCleaner(threading.Thread):
 | 
			
		||||
    def __init__(self, objects_parsed, detected_objects):
 | 
			
		||||
@ -25,14 +27,13 @@ class ObjectCleaner(threading.Thread):
 | 
			
		||||
            # (newest objects are appended to the end)
 | 
			
		||||
            detected_objects = self._detected_objects.copy()
 | 
			
		||||
 | 
			
		||||
            num_to_delete = 0
 | 
			
		||||
            for obj in detected_objects:
 | 
			
		||||
                if now-obj['frame_time']<2:
 | 
			
		||||
                    break
 | 
			
		||||
                num_to_delete += 1
 | 
			
		||||
            if num_to_delete > 0:
 | 
			
		||||
                del self._detected_objects[:num_to_delete]
 | 
			
		||||
            objects_removed = False
 | 
			
		||||
            for frame_time in detected_objects.keys():
 | 
			
		||||
                if now-frame_time>2:
 | 
			
		||||
                    del self._detected_objects[frame_time]
 | 
			
		||||
                    objects_removed = True
 | 
			
		||||
 | 
			
		||||
            if objects_removed:
 | 
			
		||||
                # notify that parsed objects were changed
 | 
			
		||||
                with self._objects_parsed:
 | 
			
		||||
                    self._objects_parsed.notify_all()
 | 
			
		||||
@ -49,88 +50,459 @@ class DetectedObjectsProcessor(threading.Thread):
 | 
			
		||||
 | 
			
		||||
            objects = frame['detected_objects']
 | 
			
		||||
 | 
			
		||||
            if len(objects) == 0:
 | 
			
		||||
                return
 | 
			
		||||
            # print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}")
 | 
			
		||||
 | 
			
		||||
            # if len(objects) == 0:
 | 
			
		||||
            #     continue
 | 
			
		||||
 | 
			
		||||
            for raw_obj in objects:
 | 
			
		||||
                obj = {
 | 
			
		||||
                    'score': float(raw_obj.score),
 | 
			
		||||
                    'box': raw_obj.bounding_box.flatten().tolist(),
 | 
			
		||||
                    'name': str(LABELS[raw_obj.label_id]),
 | 
			
		||||
                    'score': float(raw_obj.score),
 | 
			
		||||
                    'box': {
 | 
			
		||||
                        'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                        'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
                        'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                        'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
 | 
			
		||||
                    },
 | 
			
		||||
                    'region': {
 | 
			
		||||
                        'xmin': frame['x_offset'],
 | 
			
		||||
                        'ymin': frame['y_offset'],
 | 
			
		||||
                        'xmax': frame['x_offset']+frame['size'],
 | 
			
		||||
                        'ymax': frame['y_offset']+frame['size']
 | 
			
		||||
                    },
 | 
			
		||||
                    'frame_time': frame['frame_time'],
 | 
			
		||||
                    'region_id': frame['region_id']
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                # find the matching region
 | 
			
		||||
                region = self.camera.regions[frame['region_id']]
 | 
			
		||||
                if not obj['name'] == 'bicycle':
 | 
			
		||||
                    continue
 | 
			
		||||
                
 | 
			
		||||
                # Compute some extra properties
 | 
			
		||||
                obj.update({
 | 
			
		||||
                    'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                    'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
                    'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                    'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
 | 
			
		||||
                })
 | 
			
		||||
                # if the object is within 5 pixels of the region border, and the region is not on the edge
 | 
			
		||||
                # consider the object to be clipped
 | 
			
		||||
                obj['clipped'] = False
 | 
			
		||||
                if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or 
 | 
			
		||||
                    (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
 | 
			
		||||
                    (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
 | 
			
		||||
                    (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
 | 
			
		||||
                    obj['clipped'] = True
 | 
			
		||||
                
 | 
			
		||||
                # Compute the area
 | 
			
		||||
                obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
 | 
			
		||||
                obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
 | 
			
		||||
 | 
			
		||||
                object_name = obj['name']
 | 
			
		||||
                # find the matching region
 | 
			
		||||
                # region = self.camera.regions[frame['region_id']]
 | 
			
		||||
                
 | 
			
		||||
                if object_name in region['objects']:
 | 
			
		||||
                    obj_settings = region['objects'][object_name]
 | 
			
		||||
 | 
			
		||||
                    # if the min area is larger than the
 | 
			
		||||
                    # detected object, don't add it to detected objects
 | 
			
		||||
                    if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
                        continue
 | 
			
		||||
                # object_name = obj['name']
 | 
			
		||||
                # TODO: move all this to wherever we manage "tracked objects"
 | 
			
		||||
                # if object_name in region['objects']:
 | 
			
		||||
                #     obj_settings = region['objects'][object_name]
 | 
			
		||||
 | 
			
		||||
                    # if the detected object is larger than the
 | 
			
		||||
                    # max area, don't add it to detected objects
 | 
			
		||||
                    if obj_settings.get('max_area', region['size']**2) < obj['area']:
 | 
			
		||||
                        continue
 | 
			
		||||
                #     # if the min area is larger than the
 | 
			
		||||
                #     # detected object, don't add it to detected objects
 | 
			
		||||
                #     if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
                #         continue
 | 
			
		||||
                    
 | 
			
		||||
                    # if the score is lower than the threshold, skip
 | 
			
		||||
                    if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
                        continue
 | 
			
		||||
                #     # if the detected object is larger than the
 | 
			
		||||
                #     # max area, don't add it to detected objects
 | 
			
		||||
                #     if obj_settings.get('max_area', region['size']**2) < obj['area']:
 | 
			
		||||
                #         continue
 | 
			
		||||
 | 
			
		||||
                    # compute the coordinates of the object and make sure
 | 
			
		||||
                    # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
                    y_location = min(int(obj['ymax']), len(self.mask)-1)
 | 
			
		||||
                    x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
 | 
			
		||||
                #     # if the score is lower than the threshold, skip
 | 
			
		||||
                #     if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
                #         continue
 | 
			
		||||
                
 | 
			
		||||
                    # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
                    if self.camera.mask[y_location][x_location] == [0]:
 | 
			
		||||
                        continue
 | 
			
		||||
                #     # compute the coordinates of the object and make sure
 | 
			
		||||
                #     # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
                #     y_location = min(int(obj['ymax']), len(self.mask)-1)
 | 
			
		||||
                #     x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
 | 
			
		||||
 | 
			
		||||
                # look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
 | 
			
		||||
                # if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or 
 | 
			
		||||
                #     (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
 | 
			
		||||
                #     (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
 | 
			
		||||
                #     (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
 | 
			
		||||
                #     # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
                #     if self.camera.mask[y_location][x_location] == [0]:
 | 
			
		||||
                #         continue
 | 
			
		||||
 | 
			
		||||
                #     size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
 | 
			
		||||
                    # This triggers WAY too often with stationary objects on the edge of a region. 
 | 
			
		||||
                    # Every frame triggers it and fills the queue...
 | 
			
		||||
                    # I need to create a new region and add it to the list of regions, but 
 | 
			
		||||
                    # it needs to check for a duplicate region first.
 | 
			
		||||
                # see if the current object is a duplicate
 | 
			
		||||
                # TODO: still need to decide which copy to keep
 | 
			
		||||
                obj['duplicate'] = False
 | 
			
		||||
                for existing_obj in self.camera.detected_objects[frame['frame_time']]:
 | 
			
		||||
                    # compute intersection rectangle with existing object and new objects region
 | 
			
		||||
                    existing_obj_current_region = compute_intersection_rectangle(existing_obj['box'], obj['region'])
 | 
			
		||||
 | 
			
		||||
                    # self.resize_queue.put({
 | 
			
		||||
                    #     'camera_name': self.name,
 | 
			
		||||
                    #     'frame_time': frame['frame_time'],
 | 
			
		||||
                    #     'region_id': frame['region_id'],
 | 
			
		||||
                    #     'size': size,
 | 
			
		||||
                    #     'x_offset': x_offset,
 | 
			
		||||
                    #     'y_offset': y_offset
 | 
			
		||||
                    # })
 | 
			
		||||
                    # print('object too close to region border')
 | 
			
		||||
                    #continue
 | 
			
		||||
                    # compute intersection rectangle with new object and existing objects region
 | 
			
		||||
                    new_obj_existing_region = compute_intersection_rectangle(obj['box'], existing_obj['region'])
 | 
			
		||||
 | 
			
		||||
                self.camera.detected_objects.append(obj)
 | 
			
		||||
                    # compute iou for the two intersection rectangles that were just computed
 | 
			
		||||
                    iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
 | 
			
		||||
 | 
			
		||||
                    # if intersection is greater than ?, flag as duplicate
 | 
			
		||||
                    if iou > .7:
 | 
			
		||||
                        obj['duplicate'] = True
 | 
			
		||||
                        break
 | 
			
		||||
 | 
			
		||||
                self.camera.detected_objects[frame['frame_time']].append(obj)
 | 
			
		||||
            
 | 
			
		||||
            with self.camera.regions_in_process_lock:
 | 
			
		||||
                self.camera.regions_in_process[frame['frame_time']] -= 1
 | 
			
		||||
                # print(f"Remaining regions for {frame['frame_time']}: {self.camera.regions_in_process[frame['frame_time']]}")
 | 
			
		||||
 | 
			
		||||
                if self.camera.regions_in_process[frame['frame_time']] == 0:
 | 
			
		||||
                    del self.camera.regions_in_process[frame['frame_time']]
 | 
			
		||||
                    # print('Finished frame: ', frame['frame_time'])
 | 
			
		||||
                    self.camera.finished_frame_queue.put(frame['frame_time'])
 | 
			
		||||
 | 
			
		||||
            with self.camera.objects_parsed:
 | 
			
		||||
                self.camera.objects_parsed.notify_all()
 | 
			
		||||
 | 
			
		||||
# Thread that checks finished frames for clipped objects and sends back
 | 
			
		||||
# for processing if needed
 | 
			
		||||
class RegionRefiner(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            # TODO: I need to process the frames in order for tracking...
 | 
			
		||||
            frame_time = self.camera.finished_frame_queue.get()
 | 
			
		||||
 | 
			
		||||
            # print(f"{frame_time} finished")
 | 
			
		||||
 | 
			
		||||
            object_groups = []
 | 
			
		||||
 | 
			
		||||
            # group all the duplicate objects together
 | 
			
		||||
            # TODO: should I be grouping by object type too? also, the order can determine how well they group...
 | 
			
		||||
            for new_obj in self.camera.detected_objects[frame_time]:
 | 
			
		||||
                matching_group = self.find_group(new_obj, object_groups)
 | 
			
		||||
                if matching_group is None:
 | 
			
		||||
                    object_groups.append([new_obj])
 | 
			
		||||
                else:
 | 
			
		||||
                    object_groups[matching_group].append(new_obj)
 | 
			
		||||
            
 | 
			
		||||
            # just keep the unclipped objects
 | 
			
		||||
            self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
 | 
			
		||||
 | 
			
		||||
            # print(f"{frame_time} found {len(object_groups)} groups {object_groups}")
 | 
			
		||||
            clipped_object = False
 | 
			
		||||
            # deduped_objects = []
 | 
			
		||||
            # find the largest unclipped object in each group
 | 
			
		||||
            for group in object_groups:
 | 
			
		||||
                unclipped_objects = [obj for obj in group if obj['clipped'] == False]
 | 
			
		||||
                # if no unclipped objects, we need to look again
 | 
			
		||||
                if len(unclipped_objects) == 0:
 | 
			
		||||
                    # print(f"{frame_time} no unclipped objects in group")
 | 
			
		||||
                    with self.camera.regions_in_process_lock:
 | 
			
		||||
                        if not frame_time in self.camera.regions_in_process:
 | 
			
		||||
                            self.camera.regions_in_process[frame_time] = 1
 | 
			
		||||
                        else:
 | 
			
		||||
                            self.camera.regions_in_process[frame_time] += 1
 | 
			
		||||
                    xmin = min([obj['box']['xmin'] for obj in group])
 | 
			
		||||
                    ymin = min([obj['box']['ymin'] for obj in group])
 | 
			
		||||
                    xmax = max([obj['box']['xmax'] for obj in group])
 | 
			
		||||
                    ymax = max([obj['box']['ymax'] for obj in group])
 | 
			
		||||
                    # calculate a new region that will hopefully get the entire object
 | 
			
		||||
                    (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape, 
 | 
			
		||||
                        xmin, ymin,
 | 
			
		||||
                        xmax, ymax)
 | 
			
		||||
                    # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
 | 
			
		||||
 | 
			
		||||
                    # add it to the queue
 | 
			
		||||
                    self.camera.resize_queue.put({
 | 
			
		||||
                        'camera_name': self.camera.name,
 | 
			
		||||
                        'frame_time': frame_time,
 | 
			
		||||
                        'region_id': -1,
 | 
			
		||||
                        'size': size,
 | 
			
		||||
                        'x_offset': x_offset,
 | 
			
		||||
                        'y_offset': y_offset
 | 
			
		||||
                    })
 | 
			
		||||
                    self.camera.dynamic_region_fps.update()
 | 
			
		||||
                    clipped_object = True
 | 
			
		||||
 | 
			
		||||
                # add the largest unclipped object
 | 
			
		||||
                # TODO: this makes no sense
 | 
			
		||||
                # deduped_objects.append(max(unclipped_objects, key=lambda obj: obj['area']))
 | 
			
		||||
 | 
			
		||||
            # if we found a clipped object, then this frame is not ready for processing
 | 
			
		||||
            if clipped_object:
 | 
			
		||||
                continue
 | 
			
		||||
            
 | 
			
		||||
            # print(f"{frame_time} is actually finished")
 | 
			
		||||
            # self.camera.detected_objects[frame_time] = deduped_objects
 | 
			
		||||
 | 
			
		||||
            # keep adding frames to the refined queue as long as they are finished
 | 
			
		||||
            with self.camera.regions_in_process_lock:
 | 
			
		||||
                while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
 | 
			
		||||
                    self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
 | 
			
		||||
             
 | 
			
		||||
    def has_overlap(self, new_obj, obj, overlap=0):
 | 
			
		||||
        # compute intersection rectangle with existing object and new objects region
 | 
			
		||||
        existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
 | 
			
		||||
 | 
			
		||||
        # compute intersection rectangle with new object and existing objects region
 | 
			
		||||
        new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
 | 
			
		||||
 | 
			
		||||
        # compute iou for the two intersection rectangles that were just computed
 | 
			
		||||
        iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
 | 
			
		||||
 | 
			
		||||
        # if intersection is greater than overlap
 | 
			
		||||
        if iou > overlap:
 | 
			
		||||
            return True
 | 
			
		||||
        else:
 | 
			
		||||
            return False
 | 
			
		||||
    
 | 
			
		||||
    def find_group(self, new_obj, groups):
 | 
			
		||||
        for index, group in enumerate(groups):
 | 
			
		||||
            for obj in group:
 | 
			
		||||
                if self.has_overlap(new_obj, obj):
 | 
			
		||||
                    return index
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
class ObjectTracker(threading.Thread):
 | 
			
		||||
    def __init__(self, camera, max_disappeared):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
        self.tracked_objects = {}
 | 
			
		||||
        self.disappeared = {}
 | 
			
		||||
        self.max_disappeared = max_disappeared
 | 
			
		||||
    
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            # TODO: track objects
 | 
			
		||||
            frame_time = self.camera.refined_frame_queue.get()
 | 
			
		||||
            f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
 | 
			
		||||
            f.write(self.camera.frame_with_objects(frame_time))
 | 
			
		||||
            f.close()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def register(self, index, obj):
 | 
			
		||||
        id = f"{str(obj.frame_time)}-{index}"
 | 
			
		||||
        self.tracked_objects[id] = obj
 | 
			
		||||
        self.disappeared[id] = 0
 | 
			
		||||
 | 
			
		||||
    def deregister(self, id):
 | 
			
		||||
        del self.disappeared[id]
 | 
			
		||||
        del self.tracked_objects[id]
 | 
			
		||||
    
 | 
			
		||||
    def update(self, id, new_obj):
 | 
			
		||||
        new_obj.detections = self.tracked_objects[id].detections
 | 
			
		||||
        new_obj.detections.append({
 | 
			
		||||
 | 
			
		||||
        })
 | 
			
		||||
 | 
			
		||||
    def match_and_update(self, new_objects):
 | 
			
		||||
        # check to see if the list of input bounding box rectangles
 | 
			
		||||
        # is empty
 | 
			
		||||
        if len(new_objects) == 0:
 | 
			
		||||
            # loop over any existing tracked objects and mark them
 | 
			
		||||
            # as disappeared
 | 
			
		||||
            for objectID in list(self.disappeared.keys()):
 | 
			
		||||
                self.disappeared[objectID] += 1
 | 
			
		||||
 | 
			
		||||
                # if we have reached a maximum number of consecutive
 | 
			
		||||
                # frames where a given object has been marked as
 | 
			
		||||
                # missing, deregister it
 | 
			
		||||
                if self.disappeared[objectID] > self.max_disappeared:
 | 
			
		||||
                    self.deregister(objectID)
 | 
			
		||||
 | 
			
		||||
            # return early as there are no centroids or tracking info
 | 
			
		||||
            # to update
 | 
			
		||||
            return
 | 
			
		||||
 | 
			
		||||
        # compute centroids
 | 
			
		||||
        for obj in new_objects:
 | 
			
		||||
            centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
 | 
			
		||||
            centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
 | 
			
		||||
            obj.centroid = (centroid_x, centroid_y)
 | 
			
		||||
 | 
			
		||||
        if len(self.tracked_objects) == 0:
 | 
			
		||||
            for index, obj in enumerate(new_objects):
 | 
			
		||||
                self.register(index, obj)
 | 
			
		||||
            return
 | 
			
		||||
        
 | 
			
		||||
        new_centroids = np.array([o.centroid for o in new_objects])
 | 
			
		||||
        current_ids = list(self.tracked_objects.keys())
 | 
			
		||||
        current_centroids = np.array([o.centroid for o in self.tracked_objects])
 | 
			
		||||
 | 
			
		||||
        # compute the distance between each pair of tracked
 | 
			
		||||
        # centroids and new centroids, respectively -- our
 | 
			
		||||
        # goal will be to match each new centroid to an existing
 | 
			
		||||
        # object centroid
 | 
			
		||||
        D = dist.cdist(current_centroids, new_centroids)
 | 
			
		||||
 | 
			
		||||
        # in order to perform this matching we must (1) find the
 | 
			
		||||
        # smallest value in each row and then (2) sort the row
 | 
			
		||||
        # indexes based on their minimum values so that the row
 | 
			
		||||
        # with the smallest value is at the *front* of the index
 | 
			
		||||
        # list
 | 
			
		||||
        rows = D.min(axis=1).argsort()
 | 
			
		||||
 | 
			
		||||
        # next, we perform a similar process on the columns by
 | 
			
		||||
        # finding the smallest value in each column and then
 | 
			
		||||
        # sorting using the previously computed row index list
 | 
			
		||||
        cols = D.argmin(axis=1)[rows]
 | 
			
		||||
 | 
			
		||||
        # in order to determine if we need to update, register,
 | 
			
		||||
        # or deregister an object we need to keep track of which
 | 
			
		||||
        # of the rows and column indexes we have already examined
 | 
			
		||||
        usedRows = set()
 | 
			
		||||
        usedCols = set()
 | 
			
		||||
 | 
			
		||||
        # loop over the combination of the (row, column) index
 | 
			
		||||
        # tuples
 | 
			
		||||
        for (row, col) in zip(rows, cols):
 | 
			
		||||
            # if we have already examined either the row or
 | 
			
		||||
            # column value before, ignore it
 | 
			
		||||
            # val
 | 
			
		||||
            if row in usedRows or col in usedCols:
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            # otherwise, grab the object ID for the current row,
 | 
			
		||||
            # set its new centroid, and reset the disappeared
 | 
			
		||||
            # counter
 | 
			
		||||
            objectID = current_ids[row]
 | 
			
		||||
            self.update(objectID, new_objects[col])
 | 
			
		||||
            self.disappeared[objectID] = 0
 | 
			
		||||
 | 
			
		||||
            # indicate that we have examined each of the row and
 | 
			
		||||
            # column indexes, respectively
 | 
			
		||||
            usedRows.add(row)
 | 
			
		||||
            usedCols.add(col)
 | 
			
		||||
 | 
			
		||||
        # compute both the row and column index we have NOT yet
 | 
			
		||||
        # examined
 | 
			
		||||
        unusedRows = set(range(0, D.shape[0])).difference(usedRows)
 | 
			
		||||
        unusedCols = set(range(0, D.shape[1])).difference(usedCols)
 | 
			
		||||
 | 
			
		||||
        # in the event that the number of object centroids is
 | 
			
		||||
        # equal or greater than the number of input centroids
 | 
			
		||||
        # we need to check and see if some of these objects have
 | 
			
		||||
        # potentially disappeared
 | 
			
		||||
        if D.shape[0] >= D.shape[1]:
 | 
			
		||||
            # loop over the unused row indexes
 | 
			
		||||
            for row in unusedRows:
 | 
			
		||||
                # grab the object ID for the corresponding row
 | 
			
		||||
                # index and increment the disappeared counter
 | 
			
		||||
                objectID = current_ids[row]
 | 
			
		||||
                self.disappeared[objectID] += 1
 | 
			
		||||
 | 
			
		||||
                # check to see if the number of consecutive
 | 
			
		||||
                # frames the object has been marked "disappeared"
 | 
			
		||||
                # for warrants deregistering the object
 | 
			
		||||
                if self.disappeared[objectID] > self.max_disappeared:
 | 
			
		||||
                    self.deregister(objectID)
 | 
			
		||||
 | 
			
		||||
        # otherwise, if the number of input centroids is greater
 | 
			
		||||
        # than the number of existing object centroids we need to
 | 
			
		||||
        # register each new input centroid as a trackable object
 | 
			
		||||
        else:
 | 
			
		||||
            for col in unusedCols:
 | 
			
		||||
                self.register(col, new_objects[col])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        # -------------
 | 
			
		||||
 | 
			
		||||
        # # initialize an array of input centroids for the current frame
 | 
			
		||||
        # inputCentroids = np.zeros((len(rects), 2), dtype="int")
 | 
			
		||||
 | 
			
		||||
        # # loop over the bounding box rectangles
 | 
			
		||||
        # for (i, (startX, startY, endX, endY)) in enumerate(rects):
 | 
			
		||||
        #     # use the bounding box coordinates to derive the centroid
 | 
			
		||||
        #     cX = int((startX + endX) / 2.0)
 | 
			
		||||
        #     cY = int((startY + endY) / 2.0)
 | 
			
		||||
        #     inputCentroids[i] = (cX, cY)
 | 
			
		||||
 | 
			
		||||
        # # if we are currently not tracking any objects take the input
 | 
			
		||||
        # # centroids and register each of them
 | 
			
		||||
        # if len(self.objects) == 0:
 | 
			
		||||
        #     for i in range(0, len(inputCentroids)):
 | 
			
		||||
        #         self.register(inputCentroids[i])
 | 
			
		||||
        # # otherwise, are are currently tracking objects so we need to
 | 
			
		||||
        # # try to match the input centroids to existing object
 | 
			
		||||
        # # centroids
 | 
			
		||||
        # else:
 | 
			
		||||
        #     # grab the set of object IDs and corresponding centroids
 | 
			
		||||
        #     objectIDs = list(self.objects.keys())
 | 
			
		||||
        #     objectCentroids = list(self.objects.values())
 | 
			
		||||
 | 
			
		||||
        #     # compute the distance between each pair of object
 | 
			
		||||
        #     # centroids and input centroids, respectively -- our
 | 
			
		||||
        #     # goal will be to match an input centroid to an existing
 | 
			
		||||
        #     # object centroid
 | 
			
		||||
        #     D = dist.cdist(np.array(objectCentroids), inputCentroids)
 | 
			
		||||
 | 
			
		||||
        #     # in order to perform this matching we must (1) find the
 | 
			
		||||
        #     # smallest value in each row and then (2) sort the row
 | 
			
		||||
        #     # indexes based on their minimum values so that the row
 | 
			
		||||
        #     # with the smallest value is at the *front* of the index
 | 
			
		||||
        #     # list
 | 
			
		||||
        #     rows = D.min(axis=1).argsort()
 | 
			
		||||
 | 
			
		||||
        #     # next, we perform a similar process on the columns by
 | 
			
		||||
        #     # finding the smallest value in each column and then
 | 
			
		||||
        #     # sorting using the previously computed row index list
 | 
			
		||||
        #     cols = D.argmin(axis=1)[rows]
 | 
			
		||||
 | 
			
		||||
        #     # in order to determine if we need to update, register,
 | 
			
		||||
        #     # or deregister an object we need to keep track of which
 | 
			
		||||
        #     # of the rows and column indexes we have already examined
 | 
			
		||||
        #     usedRows = set()
 | 
			
		||||
        #     usedCols = set()
 | 
			
		||||
 | 
			
		||||
        #     # loop over the combination of the (row, column) index
 | 
			
		||||
        #     # tuples
 | 
			
		||||
        #     for (row, col) in zip(rows, cols):
 | 
			
		||||
        #         # if we have already examined either the row or
 | 
			
		||||
        #         # column value before, ignore it
 | 
			
		||||
        #         # val
 | 
			
		||||
        #         if row in usedRows or col in usedCols:
 | 
			
		||||
        #             continue
 | 
			
		||||
 | 
			
		||||
        #         # otherwise, grab the object ID for the current row,
 | 
			
		||||
        #         # set its new centroid, and reset the disappeared
 | 
			
		||||
        #         # counter
 | 
			
		||||
        #         objectID = objectIDs[row]
 | 
			
		||||
        #         self.objects[objectID] = inputCentroids[col]
 | 
			
		||||
        #         self.disappeared[objectID] = 0
 | 
			
		||||
 | 
			
		||||
        #         # indicate that we have examined each of the row and
 | 
			
		||||
        #         # column indexes, respectively
 | 
			
		||||
        #         usedRows.add(row)
 | 
			
		||||
        #         usedCols.add(col)
 | 
			
		||||
 | 
			
		||||
        #     # compute both the row and column index we have NOT yet
 | 
			
		||||
        #     # examined
 | 
			
		||||
        #     unusedRows = set(range(0, D.shape[0])).difference(usedRows)
 | 
			
		||||
        #     unusedCols = set(range(0, D.shape[1])).difference(usedCols)
 | 
			
		||||
 | 
			
		||||
        #     # in the event that the number of object centroids is
 | 
			
		||||
        #     # equal or greater than the number of input centroids
 | 
			
		||||
        #     # we need to check and see if some of these objects have
 | 
			
		||||
        #     # potentially disappeared
 | 
			
		||||
        #     if D.shape[0] >= D.shape[1]:
 | 
			
		||||
        #         # loop over the unused row indexes
 | 
			
		||||
        #         for row in unusedRows:
 | 
			
		||||
        #             # grab the object ID for the corresponding row
 | 
			
		||||
        #             # index and increment the disappeared counter
 | 
			
		||||
        #             objectID = objectIDs[row]
 | 
			
		||||
        #             self.disappeared[objectID] += 1
 | 
			
		||||
 | 
			
		||||
        #             # check to see if the number of consecutive
 | 
			
		||||
        #             # frames the object has been marked "disappeared"
 | 
			
		||||
        #             # for warrants deregistering the object
 | 
			
		||||
        #             if self.disappeared[objectID] > self.maxDisappeared:
 | 
			
		||||
        #                 self.deregister(objectID)
 | 
			
		||||
 | 
			
		||||
        #     # otherwise, if the number of input centroids is greater
 | 
			
		||||
        #     # than the number of existing object centroids we need to
 | 
			
		||||
        #     # register each new input centroid as a trackable object
 | 
			
		||||
        #     else:
 | 
			
		||||
        #         for col in unusedCols:
 | 
			
		||||
        #             self.register(inputCentroids[col])
 | 
			
		||||
 | 
			
		||||
        # # return the set of trackable objects
 | 
			
		||||
        # return self.objects
 | 
			
		||||
 | 
			
		||||
# Maintains the frame and object with the highest score
 | 
			
		||||
class BestFrames(threading.Thread):
 | 
			
		||||
@ -153,7 +525,7 @@ class BestFrames(threading.Thread):
 | 
			
		||||
            # make a copy of detected objects
 | 
			
		||||
            detected_objects = self.detected_objects.copy()
 | 
			
		||||
 | 
			
		||||
            for obj in detected_objects:
 | 
			
		||||
            for obj in itertools.chain.from_iterable(detected_objects.values()):
 | 
			
		||||
                if obj['name'] in self.best_objects:
 | 
			
		||||
                    now = datetime.datetime.now().timestamp()
 | 
			
		||||
                    # if the object is a higher score than the current best score 
 | 
			
		||||
@ -170,8 +542,8 @@ class BestFrames(threading.Thread):
 | 
			
		||||
                if obj['frame_time'] in recent_frames:
 | 
			
		||||
                    best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
 | 
			
		||||
 | 
			
		||||
                    draw_box_with_label(best_frame, obj['xmin'], obj['ymin'], 
 | 
			
		||||
                        obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
 | 
			
		||||
                    draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'], 
 | 
			
		||||
                        obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
 | 
			
		||||
                    
 | 
			
		||||
                    # print a timestamp
 | 
			
		||||
                    time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
 | 
			
		||||
@ -16,22 +16,22 @@ def ReadLabelFile(file_path):
 | 
			
		||||
    return ret
 | 
			
		||||
 | 
			
		||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):    
 | 
			
		||||
    # size is 50% larger than longest edge
 | 
			
		||||
    size = max(xmax-xmin, ymax-ymin)
 | 
			
		||||
    # size is larger than longest edge
 | 
			
		||||
    size = int(max(xmax-xmin, ymax-ymin)*1.5)
 | 
			
		||||
    # if the size is too big to fit in the frame
 | 
			
		||||
    if size > min(frame_shape[0], frame_shape[1]):
 | 
			
		||||
        size = min(frame_shape[0], frame_shape[1])
 | 
			
		||||
 | 
			
		||||
    # x_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    x_offset = int(((xmax-xmin)/2+xmin)-size/2)
 | 
			
		||||
    x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if x_offset < 0:
 | 
			
		||||
        x_offset = 0
 | 
			
		||||
    elif x_offset > (frame_shape[1]-size):
 | 
			
		||||
        x_offset = (frame_shape[1]-size)
 | 
			
		||||
 | 
			
		||||
    # x_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    y_offset = int(((ymax-ymin)/2+ymin)-size/2)
 | 
			
		||||
    # y_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if y_offset < 0:
 | 
			
		||||
        y_offset = 0
 | 
			
		||||
@ -40,13 +40,44 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
 | 
			
		||||
 | 
			
		||||
    return (size, x_offset, y_offset)
 | 
			
		||||
 | 
			
		||||
def compute_intersection_rectangle(box_a, box_b):
 | 
			
		||||
    return {
 | 
			
		||||
        'xmin': max(box_a['xmin'], box_b['xmin']),
 | 
			
		||||
        'ymin': max(box_a['ymin'], box_b['ymin']),
 | 
			
		||||
        'xmax': min(box_a['xmax'], box_b['xmax']),
 | 
			
		||||
        'ymax': min(box_a['ymax'], box_b['ymax'])
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
def compute_intersection_over_union(box_a, box_b):
 | 
			
		||||
    # determine the (x, y)-coordinates of the intersection rectangle
 | 
			
		||||
    intersect = compute_intersection_rectangle(box_a, box_b)
 | 
			
		||||
 | 
			
		||||
    # compute the area of intersection rectangle
 | 
			
		||||
    inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
 | 
			
		||||
 | 
			
		||||
    if inter_area == 0:
 | 
			
		||||
        return 0.0
 | 
			
		||||
    
 | 
			
		||||
    # compute the area of both the prediction and ground-truth
 | 
			
		||||
    # rectangles
 | 
			
		||||
    box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
 | 
			
		||||
    box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
 | 
			
		||||
 | 
			
		||||
    # compute the intersection over union by taking the intersection
 | 
			
		||||
    # area and dividing it by the sum of prediction + ground-truth
 | 
			
		||||
    # areas - the interesection area
 | 
			
		||||
    iou = inter_area / float(box_a_area + box_b_area - inter_area)
 | 
			
		||||
 | 
			
		||||
    # return the intersection over union value
 | 
			
		||||
    return iou
 | 
			
		||||
 | 
			
		||||
# convert shared memory array into numpy array
 | 
			
		||||
def tonumpyarray(mp_arr):
 | 
			
		||||
    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
 | 
			
		||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info):
 | 
			
		||||
    color = COLOR_MAP[label]
 | 
			
		||||
    display_text = "{}: {}% {}".format(label,int(score*100),int(area))
 | 
			
		||||
    display_text = "{}: {}".format(label, info)
 | 
			
		||||
    cv2.rectangle(frame, (x_min, y_min), 
 | 
			
		||||
        (x_max, y_max), 
 | 
			
		||||
        color, 2)
 | 
			
		||||
 | 
			
		||||
@ -9,10 +9,11 @@ import multiprocessing as mp
 | 
			
		||||
import subprocess as sp
 | 
			
		||||
import numpy as np
 | 
			
		||||
import prctl
 | 
			
		||||
import itertools
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from . util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
 | 
			
		||||
from . object_detection import RegionPrepper, RegionRequester
 | 
			
		||||
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor
 | 
			
		||||
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
 | 
			
		||||
from . mqtt import MqttObjectPublisher
 | 
			
		||||
 | 
			
		||||
# Stores 2 seconds worth of frames so they can be used for other threads
 | 
			
		||||
@ -36,7 +37,7 @@ class FrameTracker(threading.Thread):
 | 
			
		||||
            # delete any old frames
 | 
			
		||||
            stored_frame_times = list(self.recent_frames.keys())
 | 
			
		||||
            for k in stored_frame_times:
 | 
			
		||||
                if (now - k) > 2:
 | 
			
		||||
                if (now - k) > 10:
 | 
			
		||||
                    del self.recent_frames[k]
 | 
			
		||||
 | 
			
		||||
def get_frame_shape(source):
 | 
			
		||||
@ -101,6 +102,7 @@ class CameraCapture(threading.Thread):
 | 
			
		||||
                    .reshape(self.camera.frame_shape)
 | 
			
		||||
                )
 | 
			
		||||
                self.camera.frame_cache[self.camera.frame_time.value] = self.camera.current_frame.copy()
 | 
			
		||||
                self.camera.frame_queue.put(self.camera.frame_time.value)
 | 
			
		||||
            # Notify with the condition that a new frame is ready
 | 
			
		||||
            with self.camera.frame_ready:
 | 
			
		||||
                self.camera.frame_ready.notify_all()
 | 
			
		||||
@ -111,8 +113,17 @@ class Camera:
 | 
			
		||||
    def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
 | 
			
		||||
        self.name = name
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.detected_objects = []
 | 
			
		||||
        self.detected_objects = defaultdict(lambda: [])
 | 
			
		||||
        self.tracked_objects = []
 | 
			
		||||
        self.frame_cache = {}
 | 
			
		||||
        # queue for re-assembling frames in order
 | 
			
		||||
        self.frame_queue = queue.Queue()
 | 
			
		||||
        # track how many regions have been requested for a frame so we know when a frame is complete
 | 
			
		||||
        self.regions_in_process = {}
 | 
			
		||||
        # Lock to control access
 | 
			
		||||
        self.regions_in_process_lock = mp.Lock()
 | 
			
		||||
        self.finished_frame_queue = queue.Queue()
 | 
			
		||||
        self.refined_frame_queue = queue.Queue()
 | 
			
		||||
 | 
			
		||||
        self.ffmpeg = config.get('ffmpeg', {})
 | 
			
		||||
        self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
 | 
			
		||||
@ -193,6 +204,16 @@ class Camera:
 | 
			
		||||
        self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
 | 
			
		||||
        self.object_cleaner.start()
 | 
			
		||||
 | 
			
		||||
        # start a thread to refine regions when objects are clipped
 | 
			
		||||
        self.dynamic_region_fps = EventsPerSecond()
 | 
			
		||||
        self.region_refiner = RegionRefiner(self)
 | 
			
		||||
        self.region_refiner.start()
 | 
			
		||||
        self.dynamic_region_fps.start()
 | 
			
		||||
 | 
			
		||||
        # start a thread to track objects
 | 
			
		||||
        self.object_tracker = ObjectTracker(self, 10)
 | 
			
		||||
        self.object_tracker.start()
 | 
			
		||||
 | 
			
		||||
        # start a thread to publish object scores
 | 
			
		||||
        mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
 | 
			
		||||
        mqtt_publisher.start()
 | 
			
		||||
@ -270,12 +291,47 @@ class Camera:
 | 
			
		||||
    def stats(self):
 | 
			
		||||
        return {
 | 
			
		||||
            'camera_fps': self.fps.eps(60),
 | 
			
		||||
            'resize_queue': self.resize_queue.qsize()
 | 
			
		||||
            'resize_queue': self.resize_queue.qsize(),
 | 
			
		||||
            'frame_queue': self.frame_queue.qsize(),
 | 
			
		||||
            'finished_frame_queue': self.finished_frame_queue.qsize(),
 | 
			
		||||
            'refined_frame_queue': self.refined_frame_queue.qsize(),
 | 
			
		||||
            'regions_in_process': self.regions_in_process,
 | 
			
		||||
            'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
 | 
			
		||||
        }
 | 
			
		||||
    
 | 
			
		||||
    def frame_with_objects(self, frame_time):
 | 
			
		||||
        frame = self.frame_cache[frame_time].copy()
 | 
			
		||||
 | 
			
		||||
        for region in self.regions:
 | 
			
		||||
            color = (255,255,255)
 | 
			
		||||
            cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
 | 
			
		||||
                (region['x_offset']+region['size'], region['y_offset']+region['size']), 
 | 
			
		||||
                color, 2)
 | 
			
		||||
 | 
			
		||||
        # draw the bounding boxes on the screen
 | 
			
		||||
        for obj in self.detected_objects[frame_time]:
 | 
			
		||||
        # for obj in detected_objects[frame_time]:
 | 
			
		||||
            cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']), 
 | 
			
		||||
                (obj['region']['xmax'], obj['region']['ymax']), 
 | 
			
		||||
                (0,255,0), 1)
 | 
			
		||||
            draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
 | 
			
		||||
            
 | 
			
		||||
        # print a timestamp
 | 
			
		||||
        time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
        cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
        
 | 
			
		||||
        # print fps
 | 
			
		||||
        cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
 | 
			
		||||
        # convert to BGR
 | 
			
		||||
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
 | 
			
		||||
        # encode the image into a jpg
 | 
			
		||||
        ret, jpg = cv2.imencode('.jpg', frame)
 | 
			
		||||
 | 
			
		||||
        return jpg.tobytes()
 | 
			
		||||
 | 
			
		||||
    def get_current_frame_with_objects(self):
 | 
			
		||||
        # make a copy of the current detected objects
 | 
			
		||||
        detected_objects = self.detected_objects.copy()
 | 
			
		||||
        # lock and make a copy of the current frame
 | 
			
		||||
        with self.frame_lock:
 | 
			
		||||
            frame = self.current_frame.copy()
 | 
			
		||||
@ -284,9 +340,16 @@ class Camera:
 | 
			
		||||
        if frame_time == self.cached_frame_with_objects['frame_time']:
 | 
			
		||||
            return self.cached_frame_with_objects['frame_bytes']
 | 
			
		||||
 | 
			
		||||
        # make a copy of the current detected objects
 | 
			
		||||
        detected_objects = self.detected_objects.copy()
 | 
			
		||||
 | 
			
		||||
        # draw the bounding boxes on the screen
 | 
			
		||||
        for obj in detected_objects:
 | 
			
		||||
            draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
 | 
			
		||||
        for obj in [obj for frame_list in detected_objects.values() for obj in frame_list]:
 | 
			
		||||
        # for obj in detected_objects[frame_time]:
 | 
			
		||||
            draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
 | 
			
		||||
            cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']), 
 | 
			
		||||
                (obj['region']['xmax'], obj['region']['ymax']), 
 | 
			
		||||
                (0,255,0), 2)
 | 
			
		||||
 | 
			
		||||
        for region in self.regions:
 | 
			
		||||
            color = (255,255,255)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user