mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-31 00:18:55 +01:00
merge boxes by label
This commit is contained in:
parent
08174d8db2
commit
49dc029c43
@ -113,45 +113,49 @@ class RegionRefiner(threading.Thread):
|
|||||||
detected_objects = self.camera.detected_objects[frame_time].copy()
|
detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||||
# print(f"{frame_time} finished")
|
# print(f"{frame_time} finished")
|
||||||
|
|
||||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
detected_object_groups = defaultdict(lambda: []))
|
||||||
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
# group by name
|
||||||
for o in detected_objects]
|
for obj in detected_objects:
|
||||||
confidences = [o['score'] for o in detected_objects]
|
detected_object_groups[obj['name']].append(obj)
|
||||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
|
||||||
|
|
||||||
# print(f"{frame_time} - NMS reduced objects from {len(detected_objects)} to {len(idxs)}")
|
|
||||||
|
|
||||||
look_again = False
|
look_again = False
|
||||||
# get selected objects
|
|
||||||
selected_objects = []
|
selected_objects = []
|
||||||
for index in idxs:
|
for name, group in detected_object_groups.items():
|
||||||
obj = detected_objects[index[0]]
|
|
||||||
selected_objects.append(obj)
|
|
||||||
if obj['clipped']:
|
|
||||||
box = obj['box']
|
|
||||||
# calculate a new region that will hopefully get the entire object
|
|
||||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
|
||||||
box['xmin'], box['ymin'],
|
|
||||||
box['xmax'], box['ymax'])
|
|
||||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
|
||||||
|
|
||||||
with self.camera.regions_in_process_lock:
|
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||||
if not frame_time in self.camera.regions_in_process:
|
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||||
self.camera.regions_in_process[frame_time] = 1
|
for o in detected_objects]
|
||||||
else:
|
confidences = [o['score'] for o in detected_objects]
|
||||||
self.camera.regions_in_process[frame_time] += 1
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||||
|
|
||||||
# add it to the queue
|
for index in idxs:
|
||||||
self.camera.resize_queue.put({
|
obj = group[index[0]]
|
||||||
'camera_name': self.camera.name,
|
selected_objects.append(obj)
|
||||||
'frame_time': frame_time,
|
if obj['clipped']:
|
||||||
'region_id': -1,
|
box = obj['box']
|
||||||
'size': size,
|
# calculate a new region that will hopefully get the entire object
|
||||||
'x_offset': x_offset,
|
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||||
'y_offset': y_offset
|
box['xmin'], box['ymin'],
|
||||||
})
|
box['xmax'], box['ymax'])
|
||||||
self.camera.dynamic_region_fps.update()
|
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||||
look_again = True
|
|
||||||
|
with self.camera.regions_in_process_lock:
|
||||||
|
if not frame_time in self.camera.regions_in_process:
|
||||||
|
self.camera.regions_in_process[frame_time] = 1
|
||||||
|
else:
|
||||||
|
self.camera.regions_in_process[frame_time] += 1
|
||||||
|
|
||||||
|
# add it to the queue
|
||||||
|
self.camera.resize_queue.put({
|
||||||
|
'camera_name': self.camera.name,
|
||||||
|
'frame_time': frame_time,
|
||||||
|
'region_id': -1,
|
||||||
|
'size': size,
|
||||||
|
'x_offset': x_offset,
|
||||||
|
'y_offset': y_offset
|
||||||
|
})
|
||||||
|
self.camera.dynamic_region_fps.update()
|
||||||
|
look_again = True
|
||||||
|
|
||||||
# if we are looking again, then this frame is not ready for processing
|
# if we are looking again, then this frame is not ready for processing
|
||||||
if look_again:
|
if look_again:
|
||||||
|
Loading…
Reference in New Issue
Block a user