mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
Initial support for Hailo-8L (#12431)
* Initial support for Hailo-8L Added file for Hailo-8L detector including dockerfile, h8l.mk, h8l.hcl, hailo8l.py, ci.yml and ssd_mobilenat_v1.hef as the inference network. Added files to help with the installation of Hailo-8L dependences like generate_wheel_conf.py, requirements-wheel-h8l.txt and modified setup.py to try and work with any hardware. Updated docs to reflect Initial Hailo-8L support including oject_detectors.md, hardware.md and installation.md. * Update .github/workflows/ci.yml typo h8l not arm64 Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/configuration/object_detectors.md Clarity for the end user and correct uses of words Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * Update docs/docs/frigate/installation.md typo Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * update Installation.md to clarify Hailo-8L installation process. * Update docs/docs/frigate/hardware.md Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update hardware.md add Inference time. * Oops no new line at the end of the file. * Update docs/docs/frigate/hardware.md typo Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com> * Update dockerfile to download the ssd_modilenet_v1 model instead of having it in the repo. * Updated dockerfile so it dose not download the model file. add function to download it at runtime. update model path. * fix formatting according to ruff and removed unnecessary functions. --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
This commit is contained in:
parent
e7fabce4e0
commit
4a35573210
10
.github/workflows/ci.yml
vendored
10
.github/workflows/ci.yml
vendored
@ -78,6 +78,16 @@ jobs:
|
|||||||
set: |
|
set: |
|
||||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||||
*.cache-from=type=gha
|
*.cache-from=type=gha
|
||||||
|
- name: Build and push Hailo-8l build
|
||||||
|
uses: docker/bake-action@v4
|
||||||
|
with:
|
||||||
|
push: true
|
||||||
|
targets: h8l
|
||||||
|
files: docker/hailo8l/h8l.hcl
|
||||||
|
set: |
|
||||||
|
h8l.tags=${{ steps.setup.outputs.image-name }}-h8l
|
||||||
|
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-h8l
|
||||||
|
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-h8l,mode=max
|
||||||
jetson_jp4_build:
|
jetson_jp4_build:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
name: Jetson Jetpack 4
|
name: Jetson Jetpack 4
|
||||||
|
@ -4,3 +4,4 @@
|
|||||||
/docker/tensorrt/*jetson* @madsciencetist
|
/docker/tensorrt/*jetson* @madsciencetist
|
||||||
/docker/rockchip/ @MarcA711
|
/docker/rockchip/ @MarcA711
|
||||||
/docker/rocm/ @harakas
|
/docker/rocm/ @harakas
|
||||||
|
/docker/hailo8l/ @spanner3003
|
||||||
|
100
docker/hailo8l/Dockerfile
Normal file
100
docker/hailo8l/Dockerfile
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
# syntax=docker/dockerfile:1.6
|
||||||
|
|
||||||
|
ARG DEBIAN_FRONTEND=noninteractive
|
||||||
|
|
||||||
|
# Build Python wheels
|
||||||
|
FROM wheels AS h8l-wheels
|
||||||
|
|
||||||
|
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||||
|
COPY docker/hailo8l/requirements-wheels-h8l.txt /requirements-wheels-h8l.txt
|
||||||
|
|
||||||
|
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
|
||||||
|
|
||||||
|
# Create a directory to store the built wheels
|
||||||
|
RUN mkdir /h8l-wheels
|
||||||
|
|
||||||
|
# Build the wheels
|
||||||
|
RUN pip3 wheel --wheel-dir=/h8l-wheels -c /requirements-wheels.txt -r /requirements-wheels-h8l.txt
|
||||||
|
|
||||||
|
# Build HailoRT and create wheel
|
||||||
|
FROM deps AS build-hailort
|
||||||
|
|
||||||
|
# Install necessary APT packages
|
||||||
|
RUN apt-get update && apt-get install -y \
|
||||||
|
build-essential \
|
||||||
|
cmake \
|
||||||
|
git \
|
||||||
|
wget \
|
||||||
|
python3-dev \
|
||||||
|
gcc-9 \
|
||||||
|
g++-9 \
|
||||||
|
libzmq3-dev \
|
||||||
|
pciutils \
|
||||||
|
rsync \
|
||||||
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
|
# Extract Python version and set environment variables
|
||||||
|
RUN PYTHON_VERSION=$(python3 --version 2>&1 | awk '{print $2}' | cut -d. -f1,2) && \
|
||||||
|
PYTHON_VERSION_NO_DOT=$(echo $PYTHON_VERSION | sed 's/\.//') && \
|
||||||
|
echo "PYTHON_VERSION=$PYTHON_VERSION" > /etc/environment && \
|
||||||
|
echo "PYTHON_VERSION_NO_DOT=$PYTHON_VERSION_NO_DOT" >> /etc/environment
|
||||||
|
|
||||||
|
#ENV PYTHON_VER=$PYTHON_VERSION
|
||||||
|
#ENV PYTHON_VER_NO_DOT=$PYTHON_VERSION_NO_DOT
|
||||||
|
|
||||||
|
# Clone and build HailoRT
|
||||||
|
RUN . /etc/environment && \
|
||||||
|
git clone https://github.com/hailo-ai/hailort.git /opt/hailort && \
|
||||||
|
cd /opt/hailort && \
|
||||||
|
git checkout v4.17.0 && \
|
||||||
|
cmake -H. -Bbuild -DCMAKE_BUILD_TYPE=Release -DHAILO_BUILD_PYBIND=1 -DPYBIND11_PYTHON_VERSION=${PYTHON_VERSION} && \
|
||||||
|
cmake --build build --config release --target libhailort && \
|
||||||
|
cmake --build build --config release --target _pyhailort && \
|
||||||
|
cp build/hailort/libhailort/bindings/python/src/_pyhailort.cpython-${PYTHON_VERSION_NO_DOT}-aarch64-linux-gnu.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/ && \
|
||||||
|
cp build/hailort/libhailort/src/libhailort.so hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||||
|
|
||||||
|
RUN ls -ahl /opt/hailort/build/hailort/libhailort/src/
|
||||||
|
RUN ls -ahl /opt/hailort/hailort/libhailort/bindings/python/platform/hailo_platform/pyhailort/
|
||||||
|
|
||||||
|
# Remove the existing setup.py if it exists in the target directory
|
||||||
|
RUN rm -f /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||||
|
|
||||||
|
# Copy generate_wheel_conf.py and setup.py
|
||||||
|
COPY docker/hailo8l/pyhailort_build_scripts/generate_wheel_conf.py /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||||
|
COPY docker/hailo8l/pyhailort_build_scripts/setup.py /opt/hailort/hailort/libhailort/bindings/python/platform/setup.py
|
||||||
|
|
||||||
|
# Run the generate_wheel_conf.py script
|
||||||
|
RUN python3 /opt/hailort/hailort/libhailort/bindings/python/platform/generate_wheel_conf.py
|
||||||
|
|
||||||
|
# Create a wheel file using pip3 wheel
|
||||||
|
RUN cd /opt/hailort/hailort/libhailort/bindings/python/platform && \
|
||||||
|
python3 setup.py bdist_wheel --dist-dir /hailo-wheels
|
||||||
|
|
||||||
|
# Use deps as the base image
|
||||||
|
FROM deps AS h8l-frigate
|
||||||
|
|
||||||
|
# Copy the wheels from the wheels stage
|
||||||
|
COPY --from=h8l-wheels /h8l-wheels /deps/h8l-wheels
|
||||||
|
COPY --from=build-hailort /hailo-wheels /deps/hailo-wheels
|
||||||
|
COPY --from=build-hailort /etc/environment /etc/environment
|
||||||
|
RUN CC=$(python3 -c "import sysconfig; import shlex; cc = sysconfig.get_config_var('CC'); cc_cmd = shlex.split(cc)[0]; print(cc_cmd[:-4] if cc_cmd.endswith('-gcc') else cc_cmd)") && \
|
||||||
|
echo "CC=$CC" >> /etc/environment
|
||||||
|
|
||||||
|
# Install the wheels
|
||||||
|
RUN pip3 install -U /deps/h8l-wheels/*.whl
|
||||||
|
RUN pip3 install -U /deps/hailo-wheels/*.whl
|
||||||
|
|
||||||
|
RUN . /etc/environment && \
|
||||||
|
mv /usr/local/lib/python${PYTHON_VERSION}/dist-packages/hailo_platform/pyhailort/libhailort.so /usr/lib/${CC} && \
|
||||||
|
cd /usr/lib/${CC}/ && \
|
||||||
|
ln -s libhailort.so libhailort.so.4.17.0
|
||||||
|
|
||||||
|
# Copy base files from the rootfs stage
|
||||||
|
COPY --from=rootfs / /
|
||||||
|
|
||||||
|
# Set environment variables for Hailo SDK
|
||||||
|
ENV PATH="/opt/hailort/bin:${PATH}"
|
||||||
|
ENV LD_LIBRARY_PATH="/usr/lib/aarch64-linux-gnu:${LD_LIBRARY_PATH}"
|
||||||
|
|
||||||
|
# Set workdir
|
||||||
|
WORKDIR /opt/frigate/
|
27
docker/hailo8l/h8l.hcl
Normal file
27
docker/hailo8l/h8l.hcl
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
target wheels {
|
||||||
|
dockerfile = "docker/main/Dockerfile"
|
||||||
|
platforms = ["linux/arm64"]
|
||||||
|
target = "wheels"
|
||||||
|
}
|
||||||
|
|
||||||
|
target deps {
|
||||||
|
dockerfile = "docker/main/Dockerfile"
|
||||||
|
platforms = ["linux/arm64"]
|
||||||
|
target = "deps"
|
||||||
|
}
|
||||||
|
|
||||||
|
target rootfs {
|
||||||
|
dockerfile = "docker/main/Dockerfile"
|
||||||
|
platforms = ["linux/arm64"]
|
||||||
|
target = "rootfs"
|
||||||
|
}
|
||||||
|
|
||||||
|
target h8l {
|
||||||
|
dockerfile = "docker/hailo8l/Dockerfile"
|
||||||
|
contexts = {
|
||||||
|
wheels = "target:wheels"
|
||||||
|
deps = "target:deps"
|
||||||
|
rootfs = "target:rootfs"
|
||||||
|
}
|
||||||
|
platforms = ["linux/arm64"]
|
||||||
|
}
|
10
docker/hailo8l/h8l.mk
Normal file
10
docker/hailo8l/h8l.mk
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
BOARDS += h8l
|
||||||
|
|
||||||
|
local-h8l: version
|
||||||
|
docker buildx bake --load --file=docker/hailo8l/h8l.hcl --set h8l.tags=frigate:latest-h8l h8l
|
||||||
|
|
||||||
|
build-h8l: version
|
||||||
|
docker buildx bake --file=docker/hailo8l/h8l.hcl --set h8l.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-h8l h8l
|
||||||
|
|
||||||
|
push-h8l: build-h8l
|
||||||
|
docker buildx bake --push --file=docker/hailo8l/h8l.hcl --set h8l.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-h8l h8l
|
@ -0,0 +1,67 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import sys
|
||||||
|
import sysconfig
|
||||||
|
|
||||||
|
|
||||||
|
def extract_toolchain_info(compiler):
|
||||||
|
# Remove the "-gcc" or "-g++" suffix if present
|
||||||
|
if compiler.endswith("-gcc") or compiler.endswith("-g++"):
|
||||||
|
compiler = compiler.rsplit("-", 1)[0]
|
||||||
|
|
||||||
|
# Extract the toolchain and ABI part (e.g., "gnu")
|
||||||
|
toolchain_parts = compiler.split("-")
|
||||||
|
abi_conventions = next(
|
||||||
|
(part for part in toolchain_parts if part in ["gnu", "musl", "eabi", "uclibc"]),
|
||||||
|
"",
|
||||||
|
)
|
||||||
|
|
||||||
|
return abi_conventions
|
||||||
|
|
||||||
|
|
||||||
|
def generate_wheel_conf():
|
||||||
|
conf_file_path = os.path.join(
|
||||||
|
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Extract current system and Python version information
|
||||||
|
py_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
|
||||||
|
arch = platform.machine()
|
||||||
|
system = platform.system().lower()
|
||||||
|
libc_version = platform.libc_ver()[1]
|
||||||
|
|
||||||
|
# Get the compiler information
|
||||||
|
compiler = sysconfig.get_config_var("CC")
|
||||||
|
abi_conventions = extract_toolchain_info(compiler)
|
||||||
|
|
||||||
|
# Create the new configuration data
|
||||||
|
new_conf_data = {
|
||||||
|
"py_version": py_version,
|
||||||
|
"arch": arch,
|
||||||
|
"system": system,
|
||||||
|
"libc_version": libc_version,
|
||||||
|
"abi": abi_conventions,
|
||||||
|
"extension": {
|
||||||
|
"posix": "so",
|
||||||
|
"nt": "pyd", # Windows
|
||||||
|
}[os.name],
|
||||||
|
}
|
||||||
|
|
||||||
|
# If the file exists, load the existing data
|
||||||
|
if os.path.isfile(conf_file_path):
|
||||||
|
with open(conf_file_path, "r") as conf_file:
|
||||||
|
conf_data = json.load(conf_file)
|
||||||
|
# Update the existing data with the new data
|
||||||
|
conf_data.update(new_conf_data)
|
||||||
|
else:
|
||||||
|
# If the file does not exist, use the new data
|
||||||
|
conf_data = new_conf_data
|
||||||
|
|
||||||
|
# Write the updated data to the file
|
||||||
|
with open(conf_file_path, "w") as conf_file:
|
||||||
|
json.dump(conf_data, conf_file, indent=4)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
generate_wheel_conf()
|
111
docker/hailo8l/pyhailort_build_scripts/setup.py
Normal file
111
docker/hailo8l/pyhailort_build_scripts/setup.py
Normal file
@ -0,0 +1,111 @@
|
|||||||
|
import json
|
||||||
|
import os
|
||||||
|
|
||||||
|
from setuptools import find_packages, setup
|
||||||
|
from wheel.bdist_wheel import bdist_wheel as orig_bdist_wheel
|
||||||
|
|
||||||
|
|
||||||
|
class NonPurePythonBDistWheel(orig_bdist_wheel):
|
||||||
|
"""Makes the wheel platform-dependent so it can be based on the _pyhailort architecture"""
|
||||||
|
|
||||||
|
def finalize_options(self):
|
||||||
|
orig_bdist_wheel.finalize_options(self)
|
||||||
|
self.root_is_pure = False
|
||||||
|
|
||||||
|
|
||||||
|
def _get_hailort_lib_path():
|
||||||
|
lib_filename = "libhailort.so"
|
||||||
|
lib_path = os.path.join(
|
||||||
|
os.path.abspath(os.path.dirname(__file__)),
|
||||||
|
f"hailo_platform/pyhailort/{lib_filename}",
|
||||||
|
)
|
||||||
|
if os.path.exists(lib_path):
|
||||||
|
print(f"Found libhailort shared library at: {lib_path}")
|
||||||
|
else:
|
||||||
|
print(f"Error: libhailort shared library not found at: {lib_path}")
|
||||||
|
raise FileNotFoundError(f"libhailort shared library not found at: {lib_path}")
|
||||||
|
return lib_path
|
||||||
|
|
||||||
|
|
||||||
|
def _get_pyhailort_lib_path():
|
||||||
|
conf_file_path = os.path.join(
|
||||||
|
os.path.abspath(os.path.dirname(__file__)), "wheel_conf.json"
|
||||||
|
)
|
||||||
|
if not os.path.isfile(conf_file_path):
|
||||||
|
raise FileNotFoundError(f"Configuration file not found: {conf_file_path}")
|
||||||
|
|
||||||
|
with open(conf_file_path, "r") as conf_file:
|
||||||
|
content = json.load(conf_file)
|
||||||
|
py_version = content["py_version"]
|
||||||
|
arch = content["arch"]
|
||||||
|
system = content["system"]
|
||||||
|
extension = content["extension"]
|
||||||
|
abi = content["abi"]
|
||||||
|
|
||||||
|
# Construct the filename directly
|
||||||
|
lib_filename = f"_pyhailort.cpython-{py_version.split('cp')[1]}-{arch}-{system}-{abi}.{extension}"
|
||||||
|
lib_path = os.path.join(
|
||||||
|
os.path.abspath(os.path.dirname(__file__)),
|
||||||
|
f"hailo_platform/pyhailort/{lib_filename}",
|
||||||
|
)
|
||||||
|
|
||||||
|
if os.path.exists(lib_path):
|
||||||
|
print(f"Found _pyhailort shared library at: {lib_path}")
|
||||||
|
else:
|
||||||
|
print(f"Error: _pyhailort shared library not found at: {lib_path}")
|
||||||
|
raise FileNotFoundError(
|
||||||
|
f"_pyhailort shared library not found at: {lib_path}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return lib_path
|
||||||
|
|
||||||
|
|
||||||
|
def _get_package_paths():
|
||||||
|
packages = []
|
||||||
|
pyhailort_lib = _get_pyhailort_lib_path()
|
||||||
|
hailort_lib = _get_hailort_lib_path()
|
||||||
|
if pyhailort_lib:
|
||||||
|
packages.append(pyhailort_lib)
|
||||||
|
if hailort_lib:
|
||||||
|
packages.append(hailort_lib)
|
||||||
|
packages.append(os.path.abspath("hailo_tutorials/notebooks/*"))
|
||||||
|
packages.append(os.path.abspath("hailo_tutorials/hefs/*"))
|
||||||
|
return packages
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
setup(
|
||||||
|
author="Hailo team",
|
||||||
|
author_email="contact@hailo.ai",
|
||||||
|
cmdclass={
|
||||||
|
"bdist_wheel": NonPurePythonBDistWheel,
|
||||||
|
},
|
||||||
|
description="HailoRT",
|
||||||
|
entry_points={
|
||||||
|
"console_scripts": [
|
||||||
|
"hailo=hailo_platform.tools.hailocli.main:main",
|
||||||
|
]
|
||||||
|
},
|
||||||
|
install_requires=[
|
||||||
|
"argcomplete",
|
||||||
|
"contextlib2",
|
||||||
|
"future",
|
||||||
|
"netaddr",
|
||||||
|
"netifaces",
|
||||||
|
"verboselogs",
|
||||||
|
"numpy==1.23.3",
|
||||||
|
],
|
||||||
|
name="hailort",
|
||||||
|
package_data={
|
||||||
|
"hailo_platform": _get_package_paths(),
|
||||||
|
},
|
||||||
|
packages=find_packages(),
|
||||||
|
platforms=[
|
||||||
|
"linux_x86_64",
|
||||||
|
"linux_aarch64",
|
||||||
|
"win_amd64",
|
||||||
|
],
|
||||||
|
url="https://hailo.ai/",
|
||||||
|
version="4.17.0",
|
||||||
|
zip_safe=False,
|
||||||
|
)
|
12
docker/hailo8l/requirements-wheels-h8l.txt
Normal file
12
docker/hailo8l/requirements-wheels-h8l.txt
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
appdirs==1.4.4
|
||||||
|
argcomplete==2.0.0
|
||||||
|
contextlib2==0.6.0.post1
|
||||||
|
distlib==0.3.6
|
||||||
|
filelock==3.8.0
|
||||||
|
future==0.18.2
|
||||||
|
importlib-metadata==5.1.0
|
||||||
|
importlib-resources==5.1.2
|
||||||
|
netaddr==0.8.0
|
||||||
|
netifaces==0.10.9
|
||||||
|
verboselogs==1.7
|
||||||
|
virtualenv==20.17.0
|
@ -5,7 +5,7 @@ title: Object Detectors
|
|||||||
|
|
||||||
# Officially Supported Detectors
|
# Officially Supported Detectors
|
||||||
|
|
||||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, and `rknn`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, `rknn`, and `hailo8l`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||||
|
|
||||||
## CPU Detector (not recommended)
|
## CPU Detector (not recommended)
|
||||||
|
|
||||||
@ -386,3 +386,25 @@ $ cat /sys/kernel/debug/rknpu/load
|
|||||||
|
|
||||||
- All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
|
- All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
|
||||||
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
||||||
|
|
||||||
|
## Hailo-8l
|
||||||
|
|
||||||
|
This detector is available if you are using the Raspberry Pi 5 with Hailo-8L AI Kit. This has not been tested using the Hailo-8L with other hardware.
|
||||||
|
|
||||||
|
### Configuration
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
detectors:
|
||||||
|
hailo8l:
|
||||||
|
type: hailo8l
|
||||||
|
device: PCIe
|
||||||
|
model:
|
||||||
|
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||||
|
|
||||||
|
model:
|
||||||
|
width: 300
|
||||||
|
height: 300
|
||||||
|
input_tensor: nhwc
|
||||||
|
input_pixel_format: bgr
|
||||||
|
model_type: ssd
|
||||||
|
```
|
||||||
|
@ -107,6 +107,12 @@ Frigate supports hardware video processing on all Rockchip boards. However, hard
|
|||||||
|
|
||||||
The inference time of a rk3588 with all 3 cores enabled is typically 25-30 ms for yolo-nas s.
|
The inference time of a rk3588 with all 3 cores enabled is typically 25-30 ms for yolo-nas s.
|
||||||
|
|
||||||
|
#### Hailo-8l PCIe
|
||||||
|
|
||||||
|
Frigate supports the Hailo-8l M.2 card on any hardware but currently it is only tested on the Raspberry Pi5 PCIe hat from the AI kit.
|
||||||
|
|
||||||
|
The inference time for the Hailo-8L chip at time of writing is around 17-21 ms for the SSD MobileNet Version 1 model.
|
||||||
|
|
||||||
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
|
## What does Frigate use the CPU for and what does it use a detector for? (ELI5 Version)
|
||||||
|
|
||||||
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
|
This is taken from a [user question on reddit](https://www.reddit.com/r/homeassistant/comments/q8mgau/comment/hgqbxh5/?utm_source=share&utm_medium=web2x&context=3). Modified slightly for clarity.
|
||||||
|
@ -100,6 +100,38 @@ By default, the Raspberry Pi limits the amount of memory available to the GPU. I
|
|||||||
|
|
||||||
Additionally, the USB Coral draws a considerable amount of power. If using any other USB devices such as an SSD, you will experience instability due to the Pi not providing enough power to USB devices. You will need to purchase an external USB hub with it's own power supply. Some have reported success with <a href="https://amzn.to/3a2mH0P" target="_blank" rel="nofollow noopener sponsored">this</a> (affiliate link).
|
Additionally, the USB Coral draws a considerable amount of power. If using any other USB devices such as an SSD, you will experience instability due to the Pi not providing enough power to USB devices. You will need to purchase an external USB hub with it's own power supply. Some have reported success with <a href="https://amzn.to/3a2mH0P" target="_blank" rel="nofollow noopener sponsored">this</a> (affiliate link).
|
||||||
|
|
||||||
|
### Hailo-8L
|
||||||
|
|
||||||
|
The Hailo-8L is an M.2 card typically connected to a carrier board for PCIe, which then connects to the Raspberry Pi 5 as part of the AI Kit. However, it can also be used on other boards equipped with an M.2 M key edge connector.
|
||||||
|
|
||||||
|
#### Installation
|
||||||
|
|
||||||
|
For Raspberry Pi 5 users with the AI Kit, installation is straightforward. Simply follow this [guide](https://www.raspberrypi.com/documentation/accessories/ai-kit.html#ai-kit-installation) to install the driver and software.
|
||||||
|
|
||||||
|
For other boards, follow these steps for installation:
|
||||||
|
|
||||||
|
1. Install the driver from the [Hailo GitHub repository](https://github.com/hailo-ai/hailort-drivers). A convenient script for Linux is available to clone the repository, build the driver, and install it.
|
||||||
|
2. Copy or download [this script](https://gist.github.com/spanner3003/4b85751d671d4ac55f926e564f1abc3e#file-install_hailo8l_driver-sh).
|
||||||
|
3. Ensure it has execution permissions with `sudo chmod +x install_hailo8l_driver.sh`
|
||||||
|
4. Run the script with `./install_hailo8l_driver.sh`
|
||||||
|
|
||||||
|
#### Setup
|
||||||
|
|
||||||
|
To set up Frigate, follow the default installation instructions, but use a Docker image with the `-h8l` suffix, for example: `ghcr.io/blakeblackshear/frigate:stable-h8l`
|
||||||
|
|
||||||
|
Next, grant Docker permissions to access your hardware by adding the following lines to your `docker-compose.yml` file:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
devices:
|
||||||
|
- /dev/hailo0
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are using `docker run`, add this option to your command `--device /dev/hailo0`
|
||||||
|
|
||||||
|
#### Configuration
|
||||||
|
|
||||||
|
Finally, configure [hardware object detection](/configuration/object_detectors#hailo-8l) to complete the setup.
|
||||||
|
|
||||||
### Rockchip platform
|
### Rockchip platform
|
||||||
|
|
||||||
Make sure that you use a linux distribution that comes with the rockchip BSP kernel 5.10 or 6.1 and necessary drivers (especially rkvdec2 and rknpu). To check, enter the following commands:
|
Make sure that you use a linux distribution that comes with the rockchip BSP kernel 5.10 or 6.1 and necessary drivers (especially rkvdec2 and rknpu). To check, enter the following commands:
|
||||||
@ -222,6 +254,7 @@ The community supported docker image tags for the current stable version are:
|
|||||||
- `stable-rocm-gfx900` - AMD gfx900 driver only
|
- `stable-rocm-gfx900` - AMD gfx900 driver only
|
||||||
- `stable-rocm-gfx1030` - AMD gfx1030 driver only
|
- `stable-rocm-gfx1030` - AMD gfx1030 driver only
|
||||||
- `stable-rocm-gfx1100` - AMD gfx1100 driver only
|
- `stable-rocm-gfx1100` - AMD gfx1100 driver only
|
||||||
|
- `stable-h8l` - Frigate build for the Hailo-8L M.2 PICe Raspberry Pi 5 hat
|
||||||
|
|
||||||
## Home Assistant Addon
|
## Home Assistant Addon
|
||||||
|
|
||||||
|
289
frigate/detectors/plugins/hailo8l.py
Normal file
289
frigate/detectors/plugins/hailo8l.py
Normal file
@ -0,0 +1,289 @@
|
|||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import urllib.request
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from hailo_platform import (
|
||||||
|
HEF,
|
||||||
|
ConfigureParams,
|
||||||
|
FormatType,
|
||||||
|
HailoRTException,
|
||||||
|
HailoStreamInterface,
|
||||||
|
InferVStreams,
|
||||||
|
InputVStreamParams,
|
||||||
|
OutputVStreamParams,
|
||||||
|
VDevice,
|
||||||
|
)
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from typing_extensions import Literal
|
||||||
|
|
||||||
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
from frigate.detectors.util import preprocess # Assuming this function is available
|
||||||
|
|
||||||
|
# Set up logging
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
# Define the detector key for Hailo
|
||||||
|
DETECTOR_KEY = "hailo8l"
|
||||||
|
|
||||||
|
|
||||||
|
# Configuration class for model settings
|
||||||
|
class ModelConfig(BaseModel):
|
||||||
|
path: str = Field(default=None, title="Model Path") # Path to the HEF file
|
||||||
|
|
||||||
|
|
||||||
|
# Configuration class for Hailo detector
|
||||||
|
class HailoDetectorConfig(BaseDetectorConfig):
|
||||||
|
type: Literal[DETECTOR_KEY] # Type of the detector
|
||||||
|
device: str = Field(default="PCIe", title="Device Type") # Device type (e.g., PCIe)
|
||||||
|
|
||||||
|
|
||||||
|
# Hailo detector class implementation
|
||||||
|
class HailoDetector(DetectionApi):
|
||||||
|
type_key = DETECTOR_KEY # Set the type key to the Hailo detector key
|
||||||
|
|
||||||
|
def __init__(self, detector_config: HailoDetectorConfig):
|
||||||
|
# Initialize device type and model path from the configuration
|
||||||
|
self.h8l_device_type = detector_config.device
|
||||||
|
self.h8l_model_path = detector_config.model.path
|
||||||
|
self.h8l_model_height = detector_config.model.height
|
||||||
|
self.h8l_model_width = detector_config.model.width
|
||||||
|
self.h8l_model_type = detector_config.model.model_type
|
||||||
|
self.h8l_tensor_format = detector_config.model.input_tensor
|
||||||
|
self.h8l_pixel_format = detector_config.model.input_pixel_format
|
||||||
|
self.model_url = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.11.0/hailo8l/ssd_mobilenet_v1.hef"
|
||||||
|
self.cache_dir = "/config/model_cache/h8l_cache"
|
||||||
|
self.expected_model_filename = "ssd_mobilenet_v1.hef"
|
||||||
|
output_type = "FLOAT32"
|
||||||
|
|
||||||
|
logger.info(f"Initializing Hailo device as {self.h8l_device_type}")
|
||||||
|
self.check_and_prepare_model()
|
||||||
|
try:
|
||||||
|
# Validate device type
|
||||||
|
if self.h8l_device_type not in ["PCIe", "M.2"]:
|
||||||
|
raise ValueError(f"Unsupported device type: {self.h8l_device_type}")
|
||||||
|
|
||||||
|
# Initialize the Hailo device
|
||||||
|
self.target = VDevice()
|
||||||
|
# Load the HEF (Hailo's binary format for neural networks)
|
||||||
|
self.hef = HEF(self.h8l_model_path)
|
||||||
|
# Create configuration parameters from the HEF
|
||||||
|
self.configure_params = ConfigureParams.create_from_hef(
|
||||||
|
hef=self.hef, interface=HailoStreamInterface.PCIe
|
||||||
|
)
|
||||||
|
# Configure the device with the HEF
|
||||||
|
self.network_groups = self.target.configure(self.hef, self.configure_params)
|
||||||
|
self.network_group = self.network_groups[0]
|
||||||
|
self.network_group_params = self.network_group.create_params()
|
||||||
|
|
||||||
|
# Create input and output virtual stream parameters
|
||||||
|
self.input_vstreams_params = InputVStreamParams.make(
|
||||||
|
self.network_group,
|
||||||
|
format_type=self.hef.get_input_vstream_infos()[0].format.type,
|
||||||
|
)
|
||||||
|
self.output_vstreams_params = OutputVStreamParams.make(
|
||||||
|
self.network_group, format_type=getattr(FormatType, output_type)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Get input and output stream information from the HEF
|
||||||
|
self.input_vstream_info = self.hef.get_input_vstream_infos()
|
||||||
|
self.output_vstream_info = self.hef.get_output_vstream_infos()
|
||||||
|
|
||||||
|
logger.info("Hailo device initialized successfully")
|
||||||
|
logger.debug(f"[__init__] Model Path: {self.h8l_model_path}")
|
||||||
|
logger.debug(f"[__init__] Input Tensor Format: {self.h8l_tensor_format}")
|
||||||
|
logger.debug(f"[__init__] Input Pixel Format: {self.h8l_pixel_format}")
|
||||||
|
logger.debug(f"[__init__] Input VStream Info: {self.input_vstream_info[0]}")
|
||||||
|
logger.debug(
|
||||||
|
f"[__init__] Output VStream Info: {self.output_vstream_info[0]}"
|
||||||
|
)
|
||||||
|
except HailoRTException as e:
|
||||||
|
logger.error(f"HailoRTException during initialization: {e}")
|
||||||
|
raise
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to initialize Hailo device: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def check_and_prepare_model(self):
|
||||||
|
# Ensure cache directory exists
|
||||||
|
if not os.path.exists(self.cache_dir):
|
||||||
|
os.makedirs(self.cache_dir)
|
||||||
|
|
||||||
|
# Check for the expected model file
|
||||||
|
model_file_path = os.path.join(self.cache_dir, self.expected_model_filename)
|
||||||
|
if not os.path.isfile(model_file_path):
|
||||||
|
logger.info(
|
||||||
|
f"A model file was not found at {model_file_path}, Downloading one from {self.model_url}."
|
||||||
|
)
|
||||||
|
urllib.request.urlretrieve(self.model_url, model_file_path)
|
||||||
|
logger.info(f"A model file was downloaded to {model_file_path}.")
|
||||||
|
else:
|
||||||
|
logger.info(
|
||||||
|
f"A model file already exists at {model_file_path} not downloading one."
|
||||||
|
)
|
||||||
|
|
||||||
|
def detect_raw(self, tensor_input):
|
||||||
|
logger.debug("[detect_raw] Entering function")
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] The `tensor_input` = {tensor_input} tensor_input shape = {tensor_input.shape}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if tensor_input is None:
|
||||||
|
raise ValueError(
|
||||||
|
"[detect_raw] The 'tensor_input' argument must be provided"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Ensure tensor_input is a numpy array
|
||||||
|
if isinstance(tensor_input, list):
|
||||||
|
tensor_input = np.array(tensor_input)
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] Converted tensor_input to numpy array: shape {tensor_input.shape}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Preprocess the tensor input using Frigate's preprocess function
|
||||||
|
processed_tensor = preprocess(
|
||||||
|
tensor_input, (1, self.h8l_model_height, self.h8l_model_width, 3), np.uint8
|
||||||
|
)
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] Tensor data and shape after preprocessing: {processed_tensor} {processed_tensor.shape}"
|
||||||
|
)
|
||||||
|
|
||||||
|
input_data = processed_tensor
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] Input data for inference shape: {processed_tensor.shape}, dtype: {processed_tensor.dtype}"
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
with InferVStreams(
|
||||||
|
self.network_group,
|
||||||
|
self.input_vstreams_params,
|
||||||
|
self.output_vstreams_params,
|
||||||
|
) as infer_pipeline:
|
||||||
|
input_dict = {}
|
||||||
|
if isinstance(input_data, dict):
|
||||||
|
input_dict = input_data
|
||||||
|
logger.debug("[detect_raw] it a dictionary.")
|
||||||
|
elif isinstance(input_data, (list, tuple)):
|
||||||
|
for idx, layer_info in enumerate(self.input_vstream_info):
|
||||||
|
input_dict[layer_info.name] = input_data[idx]
|
||||||
|
logger.debug("[detect_raw] converted from list/tuple.")
|
||||||
|
else:
|
||||||
|
if len(input_data.shape) == 3:
|
||||||
|
input_data = np.expand_dims(input_data, axis=0)
|
||||||
|
logger.debug("[detect_raw] converted from an array.")
|
||||||
|
input_dict[self.input_vstream_info[0].name] = input_data
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] Input dictionary for inference keys: {input_dict.keys()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
with self.network_group.activate(self.network_group_params):
|
||||||
|
raw_output = infer_pipeline.infer(input_dict)
|
||||||
|
logger.debug(f"[detect_raw] Raw inference output: {raw_output}")
|
||||||
|
|
||||||
|
if self.output_vstream_info[0].name not in raw_output:
|
||||||
|
logger.error(
|
||||||
|
f"[detect_raw] Missing output stream {self.output_vstream_info[0].name} in inference results"
|
||||||
|
)
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
|
||||||
|
raw_output = raw_output[self.output_vstream_info[0].name][0]
|
||||||
|
logger.debug(
|
||||||
|
f"[detect_raw] Raw output for stream {self.output_vstream_info[0].name}: {raw_output}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process the raw output
|
||||||
|
detections = self.process_detections(raw_output)
|
||||||
|
if len(detections) == 0:
|
||||||
|
logger.debug(
|
||||||
|
"[detect_raw] No detections found after processing. Setting default values."
|
||||||
|
)
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
else:
|
||||||
|
formatted_detections = detections
|
||||||
|
if (
|
||||||
|
formatted_detections.shape[1] != 6
|
||||||
|
): # Ensure the formatted detections have 6 columns
|
||||||
|
logger.error(
|
||||||
|
f"[detect_raw] Unexpected shape for formatted detections: {formatted_detections.shape}. Expected (20, 6)."
|
||||||
|
)
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
return formatted_detections
|
||||||
|
except HailoRTException as e:
|
||||||
|
logger.error(f"[detect_raw] HailoRTException during inference: {e}")
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"[detect_raw] Exception during inference: {e}")
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
finally:
|
||||||
|
logger.debug("[detect_raw] Exiting function")
|
||||||
|
|
||||||
|
def process_detections(self, raw_detections, threshold=0.5):
|
||||||
|
boxes, scores, classes = [], [], []
|
||||||
|
num_detections = 0
|
||||||
|
|
||||||
|
logger.debug(f"[process_detections] Raw detections: {raw_detections}")
|
||||||
|
|
||||||
|
for i, detection_set in enumerate(raw_detections):
|
||||||
|
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Detection set {i} is empty or not an array, skipping."
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Detection set {i} shape: {detection_set.shape}"
|
||||||
|
)
|
||||||
|
|
||||||
|
for detection in detection_set:
|
||||||
|
if detection.shape[0] == 0:
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Detection in set {i} is empty, skipping."
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
ymin, xmin, ymax, xmax = detection[:4]
|
||||||
|
score = np.clip(detection[4], 0, 1) # Use np.clip for clarity
|
||||||
|
|
||||||
|
if score < threshold:
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Detection in set {i} has a score {score} below threshold {threshold}. Skipping."
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Adding detection with coordinates: ({xmin}, {ymin}), ({xmax}, {ymax}) and score: {score}"
|
||||||
|
)
|
||||||
|
boxes.append([ymin, xmin, ymax, xmax])
|
||||||
|
scores.append(score)
|
||||||
|
classes.append(i)
|
||||||
|
num_detections += 1
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Boxes: {boxes}, Scores: {scores}, Classes: {classes}, Num detections: {num_detections}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if num_detections == 0:
|
||||||
|
logger.debug("[process_detections] No valid detections found.")
|
||||||
|
return np.zeros((20, 6), np.float32)
|
||||||
|
|
||||||
|
combined = np.hstack(
|
||||||
|
(
|
||||||
|
np.array(classes)[:, np.newaxis],
|
||||||
|
np.array(scores)[:, np.newaxis],
|
||||||
|
np.array(boxes),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
if combined.shape[0] < 20:
|
||||||
|
padding = np.zeros(
|
||||||
|
(20 - combined.shape[0], combined.shape[1]), dtype=combined.dtype
|
||||||
|
)
|
||||||
|
combined = np.vstack((combined, padding))
|
||||||
|
|
||||||
|
logger.debug(
|
||||||
|
f"[process_detections] Combined detections (padded to 20 if necessary): {np.array_str(combined, precision=4, suppress_small=True)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return combined[:20, :6]
|
Loading…
Reference in New Issue
Block a user