From 4c749e300468cfd37a050afba2af80a1c4396c50 Mon Sep 17 00:00:00 2001 From: Marc Altmann <40744649+MarcA711@users.noreply.github.com> Date: Wed, 23 Apr 2025 22:30:44 +0200 Subject: [PATCH] update rknn toolkit version (#17877) --- docker/rockchip/Dockerfile | 2 +- docker/rockchip/requirements-wheels-rk.txt | 4 ++-- docs/docs/configuration/object_detectors.md | 4 ++-- 3 files changed, 5 insertions(+), 5 deletions(-) diff --git a/docker/rockchip/Dockerfile b/docker/rockchip/Dockerfile index 59c8ad791..c38b2d49e 100644 --- a/docker/rockchip/Dockerfile +++ b/docker/rockchip/Dockerfile @@ -26,7 +26,7 @@ COPY --from=rootfs / / COPY docker/rockchip/COCO /COCO COPY docker/rockchip/conv2rknn.py /opt/conv2rknn.py -ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/librknnrt.so /usr/lib/ +ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.2/librknnrt.so /usr/lib/ ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffmpeg /usr/lib/ffmpeg/6.0/bin/ ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffprobe /usr/lib/ffmpeg/6.0/bin/ diff --git a/docker/rockchip/requirements-wheels-rk.txt b/docker/rockchip/requirements-wheels-rk.txt index 8d5b5efe0..f841f26db 100644 --- a/docker/rockchip/requirements-wheels-rk.txt +++ b/docker/rockchip/requirements-wheels-rk.txt @@ -1,2 +1,2 @@ -rknn-toolkit2 == 2.3.0 -rknn-toolkit-lite2 == 2.3.0 \ No newline at end of file +rknn-toolkit2 == 2.3.2 +rknn-toolkit-lite2 == 2.3.2 \ No newline at end of file diff --git a/docs/docs/configuration/object_detectors.md b/docs/docs/configuration/object_detectors.md index ed783e093..ebbfe01c4 100644 --- a/docs/docs/configuration/object_detectors.md +++ b/docs/docs/configuration/object_detectors.md @@ -811,7 +811,7 @@ Hardware accelerated object detection is supported on the following SoCs: - RK3576 - RK3588 -This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.3.0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model. +This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.3.2. ### Prerequisites @@ -953,7 +953,7 @@ Explanation of the paramters: - `soc`: the SoC this model was build for (e.g. "rk3588") - `tk_version`: Version of `rknn-toolkit2` (e.g. "2.3.0") - **example**: Specifying `output_name = "frigate-{quant}-{input_basename}-{soc}-v{tk_version}"` could result in a model called `frigate-i8-my_model-rk3588-v2.3.0.rknn`. -- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.0_EN.pdf). +- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.2/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.2_EN.pdf). # Models