move ffmpeg capture to a separate thread and use a queue

This commit is contained in:
Blake Blackshear 2020-03-14 15:32:51 -05:00
parent e37eba49ff
commit 4ee200a81c
4 changed files with 170 additions and 131 deletions

View File

@ -15,7 +15,7 @@ import logging
from flask import Flask, Response, make_response, jsonify, request from flask import Flask, Response, make_response, jsonify, request
import paho.mqtt.client as mqtt import paho.mqtt.client as mqtt
from frigate.video import track_camera from frigate.video import track_camera, get_ffmpeg_input, get_frame_shape, CameraCapture, start_or_restart_ffmpeg
from frigate.object_processing import TrackedObjectProcessor from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess from frigate.edgetpu import EdgeTPUProcess
@ -83,60 +83,50 @@ class CameraWatchdog(threading.Thread):
time.sleep(10) time.sleep(10)
while True: while True:
# wait a bit before checking # wait a bit before checking
time.sleep(30) time.sleep(10)
# check the plasma process # check the plasma process
rc = self.plasma_process.poll() rc = self.plasma_process.poll()
if rc != None: if rc != None:
print(f"plasma_process exited unexpectedly with {rc}") print(f"plasma_process exited unexpectedly with {rc}")
self.plasma_process = start_plasma_store() self.plasma_process = start_plasma_store()
time.sleep(10)
# check the detection process # check the detection process
if (self.tflite_process.detection_start.value > 0.0 and if (self.tflite_process.detection_start.value > 0.0 and
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10): datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
print("Detection appears to be stuck. Restarting detection process") print("Detection appears to be stuck. Restarting detection process")
self.tflite_process.start_or_restart() self.tflite_process.start_or_restart()
time.sleep(30)
elif not self.tflite_process.detect_process.is_alive(): elif not self.tflite_process.detect_process.is_alive():
print("Detection appears to have stopped. Restarting detection process") print("Detection appears to have stopped. Restarting detection process")
self.tflite_process.start_or_restart() self.tflite_process.start_or_restart()
time.sleep(30)
# check the camera processes # check the camera processes
for name, camera_process in self.camera_processes.items(): for name, camera_process in self.camera_processes.items():
process = camera_process['process'] process = camera_process['process']
if not process.is_alive(): if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...") print(f"Track process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps']) camera_process['fps'].value = float(self.config[name]['fps'])
camera_process['skipped_fps'].value = 0.0 camera_process['skipped_fps'].value = 0.0
camera_process['detection_fps'].value = 0.0 camera_process['detection_fps'].value = 0.0
camera_process['read_start'].value = 0.0 camera_process['read_start'].value = 0.0
camera_process['ffmpeg_pid'].value = 0 process = mp.Process(target=track_camera, args=(name, self.config[name], GLOBAL_OBJECT_CONFIG, camera_process['frame_queue'],
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, camera_process['frame_shape'], self.tflite_process.detection_queue, self.tracked_objects_queue,
self.tflite_process.detection_queue, self.tracked_objects_queue,
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'], camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'],
camera_process['read_start'], camera_process['ffmpeg_pid'])) camera_process['read_start']))
process.daemon = True process.daemon = True
camera_process['process'] = process camera_process['process'] = process
process.start() process.start()
print(f"Camera_process started for {name}: {process.pid}") print(f"Track process started for {name}: {process.pid}")
if (camera_process['read_start'].value > 0.0 and if not camera_process['capture_thread'].is_alive():
datetime.datetime.now().timestamp() - camera_process['read_start'].value > 10): frame_shape = camera_process['frame_shape']
print(f"Process for {name} has been reading from ffmpeg for over 10 seconds long. Killing ffmpeg...") frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
ffmpeg_pid = camera_process['ffmpeg_pid'].value ffmpeg_process = start_or_restart_ffmpeg(camera_process['ffmpeg_cmd'], frame_size)
if ffmpeg_pid != 0: camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, camera_process['frame_queue'],
try: camera_process['take_frame'], camera_process['camera_fps'])
os.kill(ffmpeg_pid, signal.SIGTERM) camera_capture.start()
except OSError: camera_process['ffmpeg_process'] = ffmpeg_process
print(f"Unable to terminate ffmpeg with pid {ffmpeg_pid}") camera_process['capture_thread'] = camera_capture
time.sleep(10)
try:
os.kill(ffmpeg_pid, signal.SIGKILL)
print(f"Unable to kill ffmpeg with pid {ffmpeg_pid}")
except OSError:
pass
def main(): def main():
# connect to mqtt and setup last will # connect to mqtt and setup last will
@ -180,17 +170,54 @@ def main():
# start the camera processes # start the camera processes
camera_processes = {} camera_processes = {}
for name, config in CONFIG['cameras'].items(): for name, config in CONFIG['cameras'].items():
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_global_args = ffmpeg.get('global_args', FFMPEG_DEFAULT_CONFIG['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', FFMPEG_DEFAULT_CONFIG['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', FFMPEG_DEFAULT_CONFIG['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', FFMPEG_DEFAULT_CONFIG['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
take_frame = config.get('take_frame', 1)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
frame_queue = mp.SimpleQueue()
camera_fps = EventsPerSecond()
camera_fps.start()
camera_capture = CameraCapture(name, ffmpeg_process, frame_shape, frame_queue, take_frame, camera_fps)
camera_capture.start()
camera_processes[name] = { camera_processes[name] = {
'camera_fps': camera_fps,
'take_frame': take_frame,
'fps': mp.Value('d', float(config['fps'])), 'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0), 'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0), 'detection_fps': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0), 'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0) 'ffmpeg_process': ffmpeg_process,
'ffmpeg_cmd': ffmpeg_cmd,
'frame_queue': frame_queue,
'frame_shape': frame_shape,
'capture_thread': camera_capture
} }
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
camera_process = mp.Process(target=track_camera, args=(name, config, GLOBAL_OBJECT_CONFIG, frame_queue, frame_shape,
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'], tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['fps'],
camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'],
camera_processes[name]['read_start'], camera_processes[name]['ffmpeg_pid'])) camera_processes[name]['read_start']))
camera_process.daemon = True camera_process.daemon = True
camera_processes[name]['process'] = camera_process camera_processes[name]['process'] = camera_process
@ -245,7 +272,7 @@ def main():
'detection_fps': round(camera_stats['detection_fps'].value, 2), 'detection_fps': round(camera_stats['detection_fps'].value, 2),
'read_start': camera_stats['read_start'].value, 'read_start': camera_stats['read_start'].value,
'pid': camera_stats['process'].pid, 'pid': camera_stats['process'].pid,
'ffmpeg_pid': camera_stats['ffmpeg_pid'].value 'ffmpeg_pid': camera_stats['ffmpeg_process'].pid
} }
stats['coral'] = { stats['coral'] = {
@ -302,7 +329,7 @@ def main():
app.run(host='0.0.0.0', port=WEB_PORT, debug=False) app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera_watchdog.join() object_processor.join()
plasma_process.terminate() plasma_process.terminate()

View File

@ -10,7 +10,7 @@ from collections import Counter, defaultdict
import itertools import itertools
import pyarrow.plasma as plasma import pyarrow.plasma as plasma
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from frigate.util import draw_box_with_label from frigate.util import draw_box_with_label, PlasmaManager
from frigate.edgetpu import load_labels from frigate.edgetpu import load_labels
PATH_TO_LABELS = '/labelmap.txt' PATH_TO_LABELS = '/labelmap.txt'
@ -36,6 +36,7 @@ class TrackedObjectProcessor(threading.Thread):
'current_frame': np.zeros((720,1280,3), np.uint8), 'current_frame': np.zeros((720,1280,3), np.uint8),
'object_id': None 'object_id': None
}) })
self.plasma_client = PlasmaManager()
def get_best(self, camera, label): def get_best(self, camera, label):
if label in self.camera_data[camera]['best_objects']: if label in self.camera_data[camera]['best_objects']:
@ -45,35 +46,8 @@ class TrackedObjectProcessor(threading.Thread):
def get_current_frame(self, camera): def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame'] return self.camera_data[camera]['current_frame']
def connect_plasma_client(self):
while True:
try:
self.plasma_client = plasma.connect("/tmp/plasma")
return
except:
print(f"TrackedObjectProcessor: unable to connect plasma client")
time.sleep(10)
def get_from_plasma(self, object_id):
while True:
try:
return self.plasma_client.get(object_id, timeout_ms=0)
except:
self.connect_plasma_client()
time.sleep(1)
def delete_from_plasma(self, object_ids):
while True:
try:
self.plasma_client.delete(object_ids)
return
except:
self.connect_plasma_client()
time.sleep(1)
def run(self): def run(self):
self.connect_plasma_client()
while True: while True:
camera, frame_time, tracked_objects = self.tracked_objects_queue.get() camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
@ -85,10 +59,7 @@ class TrackedObjectProcessor(threading.Thread):
### ###
# Draw tracked objects on the frame # Draw tracked objects on the frame
### ###
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) current_frame = self.plasma_client.get(f"{camera}{frame_time}")
object_id_bytes = object_id_hash.digest()
object_id = plasma.ObjectID(object_id_bytes)
current_frame = self.get_from_plasma(object_id)
if not current_frame is plasma.ObjectNotAvailable: if not current_frame is plasma.ObjectNotAvailable:
# draw the bounding boxes on the frame # draw the bounding boxes on the frame
@ -117,10 +88,10 @@ class TrackedObjectProcessor(threading.Thread):
self.camera_data[camera]['current_frame'] = current_frame self.camera_data[camera]['current_frame'] = current_frame
# store the object id, so you can delete it at the next loop # store the object id, so you can delete it at the next loop
previous_object_id = self.camera_data[camera]['object_id'] previous_object_id = f"{camera}{frame_time}"
if not previous_object_id is None: if not previous_object_id is None:
self.delete_from_plasma([previous_object_id]) self.plasma_client.delete(f"{camera}{frame_time}")
self.camera_data[camera]['object_id'] = object_id self.camera_data[camera]['object_id'] = f"{camera}{frame_time}"
### ###
# Maintain the highest scoring recent object and frame for each label # Maintain the highest scoring recent object and frame for each label

View File

@ -1,4 +1,5 @@
import datetime import datetime
import time
import signal import signal
import traceback import traceback
import collections import collections
@ -6,6 +7,8 @@ import numpy as np
import cv2 import cv2
import threading import threading
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import hashlib
import pyarrow.plasma as plasma
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None: if color is None:
@ -134,4 +137,47 @@ def print_stack(sig, frame):
traceback.print_stack(frame) traceback.print_stack(frame)
def listen(): def listen():
signal.signal(signal.SIGUSR1, print_stack) signal.signal(signal.SIGUSR1, print_stack)
class PlasmaManager:
def __init__(self):
self.connect()
def connect(self):
while True:
try:
self.plasma_client = plasma.connect("/tmp/plasma")
return
except:
print(f"TrackedObjectProcessor: unable to connect plasma client")
time.sleep(10)
def get(self, name, timeout_ms=0):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
return self.plasma_client.get(object_id, timeout_ms=timeout_ms)
except:
self.connect()
time.sleep(1)
def put(self, name, obj):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
self.plasma_client.put(obj, object_id)
return
except Exception as e:
print(f"Failed to put in plasma: {e}")
self.connect()
time.sleep(1)
def delete(self, name):
object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest())
while True:
try:
self.plasma_client.delete([object_id])
return
except:
self.connect()
time.sleep(1)

View File

@ -5,16 +5,15 @@ import cv2
import queue import queue
import threading import threading
import ctypes import ctypes
import pyarrow.plasma as plasma
import multiprocessing as mp import multiprocessing as mp
import subprocess as sp import subprocess as sp
import numpy as np import numpy as np
import hashlib
import pyarrow.plasma as plasma
import copy import copy
import itertools import itertools
import json import json
from collections import defaultdict from collections import defaultdict
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond, listen, PlasmaManager
from frigate.objects import ObjectTracker from frigate.objects import ObjectTracker
from frigate.edgetpu import RemoteObjectDetector from frigate.edgetpu import RemoteObjectDetector
from frigate.motion import MotionDetector from frigate.motion import MotionDetector
@ -97,7 +96,7 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0) return np.expand_dims(cropped_frame, axis=0)
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, pid, ffmpeg_process=None): def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
if not ffmpeg_process is None: if not ffmpeg_process is None:
print("Terminating the existing ffmpeg process...") print("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate() ffmpeg_process.terminate()
@ -112,30 +111,54 @@ def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, pid, ffmpeg_process=None):
print("Creating ffmpeg process...") print("Creating ffmpeg process...")
print(" ".join(ffmpeg_cmd)) print(" ".join(ffmpeg_cmd))
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10) process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
pid.value = process.pid
return process return process
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start, ffmpeg_pid): class CameraCapture(threading.Thread):
def __init__(self, name, ffmpeg_process, frame_shape, frame_queue, take_frame, fps):
threading.Thread.__init__(self)
self.name = name
self.frame_shape = frame_shape
self.frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
self.frame_queue = frame_queue
self.take_frame = take_frame
self.fps = fps
self.plasma_client = PlasmaManager()
self.ffmpeg_process = ffmpeg_process
def run(self):
frame_num = 0
while True:
if self.ffmpeg_process.poll() != None:
print(f"{self.name}: ffmpeg process is not running. exiting capture thread...")
break
frame_bytes = self.ffmpeg_process.stdout.read(self.frame_size)
frame_time = datetime.datetime.now().timestamp()
if len(frame_bytes) == 0:
print(f"{self.name}: ffmpeg didnt return a frame. something is wrong.")
continue
frame_num += 1
if (frame_num % self.take_frame) != 0:
continue
# put the frame in the plasma store
self.plasma_client.put(f"{self.name}{frame_time}",
np
.frombuffer(frame_bytes, np.uint8)
.reshape(self.frame_shape)
)
# add to the queue
self.frame_queue.put(frame_time)
self.fps.update()
def track_camera(name, config, global_objects_config, frame_queue, frame_shape, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps, read_start):
print(f"Starting process for {name}: {os.getpid()}") print(f"Starting process for {name}: {os.getpid()}")
listen() listen()
# Merge the ffmpeg config with the global config
ffmpeg = config.get('ffmpeg', {})
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
ffmpeg_restart_delay = ffmpeg.get('restart_delay', 0)
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
ffmpeg_cmd = (['ffmpeg'] +
ffmpeg_global_args +
ffmpeg_hwaccel_args +
ffmpeg_input_args +
['-i', ffmpeg_input] +
ffmpeg_output_args +
['pipe:'])
# Merge the tracked object config with the global config # Merge the tracked object config with the global config
camera_objects_config = config.get('objects', {}) camera_objects_config = config.get('objects', {})
# combine tracked objects lists # combine tracked objects lists
@ -149,14 +172,6 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})} object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
expected_fps = config['fps'] expected_fps = config['fps']
take_frame = config.get('take_frame', 1)
if 'width' in config and 'height' in config:
frame_shape = (config['height'], config['width'], 3)
else:
frame_shape = get_frame_shape(ffmpeg_input)
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
frame = np.zeros(frame_shape, np.uint8) frame = np.zeros(frame_shape, np.uint8)
@ -174,10 +189,8 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue) object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
object_tracker = ObjectTracker(10) object_tracker = ObjectTracker(10)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid) plasma_client = PlasmaManager()
plasma_client = plasma.connect("/tmp/plasma")
frame_num = 0 frame_num = 0
avg_wait = 0.0 avg_wait = 0.0
fps_tracker = EventsPerSecond() fps_tracker = EventsPerSecond()
@ -186,39 +199,23 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
skipped_fps_tracker.start() skipped_fps_tracker.start()
object_detector.fps.start() object_detector.fps.start()
while True: while True:
rc = ffmpeg_process.poll()
if rc != None:
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
print(f"Letting {name} rest for {ffmpeg_restart_delay} seconds before restarting...")
time.sleep(ffmpeg_restart_delay)
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_pid, ffmpeg_process)
time.sleep(10)
read_start.value = datetime.datetime.now().timestamp() read_start.value = datetime.datetime.now().timestamp()
frame_bytes = ffmpeg_process.stdout.read(frame_size) frame_time = frame_queue.get()
duration = datetime.datetime.now().timestamp()-read_start.value duration = datetime.datetime.now().timestamp()-read_start.value
read_start.value = 0.0 read_start.value = 0.0
avg_wait = (avg_wait*99+duration)/100 avg_wait = (avg_wait*99+duration)/100
if len(frame_bytes) == 0:
print(f"{name}: ffmpeg_process didnt return any bytes")
continue
# limit frame rate
frame_num += 1
if (frame_num % take_frame) != 0:
continue
fps_tracker.update() fps_tracker.update()
fps.value = fps_tracker.eps() fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps() detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array # Get frame from plasma store
frame[:] = (np frame = plasma_client.get(f"{name}{frame_time}")
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape)) if frame is plasma.ObjectNotAvailable:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()
continue
# look for motion # look for motion
motion_boxes = motion_detector.detect(frame) motion_boxes = motion_detector.detect(frame)
@ -227,6 +224,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait: if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
skipped_fps_tracker.update() skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps() skipped_fps.value = skipped_fps_tracker.eps()
plasma_client.delete(f"{name}{frame_time}")
continue continue
skipped_fps.value = skipped_fps_tracker.eps() skipped_fps.value = skipped_fps_tracker.eps()
@ -330,7 +328,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
for index in idxs: for index in idxs:
obj = group[index[0]] obj = group[index[0]]
if clipped(obj, frame_shape): #obj['clipped']: if clipped(obj, frame_shape):
box = obj[2] box = obj[2]
# calculate a new region that will hopefully get the entire object # calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape, region = calculate_region(frame_shape,
@ -370,9 +368,6 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
# now that we have refined our detections, we need to track objects # now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections) object_tracker.match_and_update(frame_time, detections)
# put the frame in the plasma store
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
plasma_client.put(frame, plasma.ObjectID(object_id))
# add to the queue # add to the queue
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects)) detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))