Nms optimize for stationary cars (#9684)

* Use different nms values for different object types

* Add tests

* Format tests
This commit is contained in:
Nicolas Mowen 2024-02-05 16:52:06 -07:00 committed by GitHub
parent 97a619eaf0
commit 50563eef8d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 23 additions and 2 deletions

View File

@ -26,6 +26,10 @@ LABEL_CONSOLIDATION_MAP = {
"face": 0.5,
}
LABEL_CONSOLIDATION_DEFAULT = 0.9
LABEL_NMS_MAP = {
"car": 0.6,
}
LABEL_NMS_DEFAULT = 0.4
# Audio Consts

View File

@ -287,6 +287,15 @@ class TestObjectBoundingBoxes(unittest.TestCase):
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
def test_vert_stacked_cars_not_reduced(self):
detections = [
("car", 0.8, (954, 312, 1247, 475), 498512, 1.48, (800, 200, 1400, 600)),
("car", 0.85, (970, 380, 1273, 610), 698752, 1.56, (800, 200, 1400, 700)),
]
frame_shape = (720, 1280)
consolidated_detections = reduce_detections(frame_shape, detections)
assert len(consolidated_detections) == len(detections)
class TestRegionGrid(unittest.TestCase):
def setUp(self) -> None:

View File

@ -10,7 +10,12 @@ import numpy as np
from peewee import DoesNotExist
from frigate.config import DetectConfig, ModelConfig
from frigate.const import LABEL_CONSOLIDATION_DEFAULT, LABEL_CONSOLIDATION_MAP
from frigate.const import (
LABEL_CONSOLIDATION_DEFAULT,
LABEL_CONSOLIDATION_MAP,
LABEL_NMS_DEFAULT,
LABEL_NMS_MAP,
)
from frigate.detectors.detector_config import PixelFormatEnum
from frigate.models import Event, Regions, Timeline
from frigate.util.image import (
@ -466,6 +471,7 @@ def reduce_detections(
selected_objects = []
for group in detected_object_groups.values():
label = group[0][0]
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
@ -483,7 +489,9 @@ def reduce_detections(
# due to min score requirement of NMSBoxes
confidences = [0.6 if clipped(o, frame_shape) else o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
idxs = cv2.dnn.NMSBoxes(
boxes, confidences, 0.5, LABEL_NMS_MAP.get(label, LABEL_NMS_DEFAULT)
)
# add objects
for index in idxs: