mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
Use opencv instead of face embedding
This commit is contained in:
parent
8b8df6d978
commit
51a28d3027
@ -24,7 +24,7 @@ class SemanticSearchConfig(FrigateBaseModel):
|
||||
class FaceRecognitionConfig(FrigateBaseModel):
|
||||
enabled: bool = Field(default=False, title="Enable face recognition.")
|
||||
threshold: float = Field(
|
||||
default=0.9, title="Face similarity score required to be considered a match."
|
||||
default=170, title="minimum face distance score required to be considered a match."
|
||||
)
|
||||
min_area: int = Field(
|
||||
default=500, title="Min area of face box to consider running face recognition."
|
||||
|
@ -451,29 +451,20 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
),
|
||||
]
|
||||
|
||||
ret, webp = cv2.imencode(
|
||||
".webp", face_frame, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
|
||||
)
|
||||
|
||||
if not ret:
|
||||
logger.debug("Not processing face due to error creating cropped image.")
|
||||
return
|
||||
|
||||
embedding = self.embeddings.embed_face("unknown", webp.tobytes(), upsert=False)
|
||||
res = self.face_classifier.classify_face(embedding)
|
||||
res = self.face_classifier.classify_face(face_frame)
|
||||
|
||||
if not res:
|
||||
return
|
||||
|
||||
sub_label, score = res
|
||||
sub_label, distance = res
|
||||
|
||||
logger.debug(
|
||||
f"Detected best face for person as: {sub_label} with score {score}"
|
||||
f"Detected best face for person as: {sub_label} with distance {distance}"
|
||||
)
|
||||
|
||||
if id in self.detected_faces and score <= self.detected_faces[id]:
|
||||
if id in self.detected_faces and distance >= self.detected_faces[id]:
|
||||
logger.debug(
|
||||
f"Recognized face score {score} is less than previous face score ({self.detected_faces.get(id)})."
|
||||
f"Recognized face distance {distance} is greater than previous face distance ({self.detected_faces.get(id)})."
|
||||
)
|
||||
return
|
||||
|
||||
@ -482,12 +473,11 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
json={
|
||||
"camera": obj_data.get("camera"),
|
||||
"subLabel": sub_label,
|
||||
"subLabelScore": score,
|
||||
},
|
||||
)
|
||||
|
||||
if resp.status_code == 200:
|
||||
self.detected_faces[id] = score
|
||||
self.detected_faces[id] = distance
|
||||
|
||||
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
|
||||
"""Return the dimensions of the input image as [x, y, width, height]."""
|
||||
|
@ -4,6 +4,7 @@ import logging
|
||||
import os
|
||||
from typing import Any, Optional
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from playhouse.sqliteq import SqliteQueueDatabase
|
||||
@ -164,81 +165,38 @@ class FaceClassificationModel:
|
||||
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
|
||||
self.config = config
|
||||
self.db = db
|
||||
self.labeler: Optional[LabelEncoder] = None
|
||||
self.classifier: Optional[SVC] = None
|
||||
self.embedding_query = f"""
|
||||
SELECT
|
||||
id,
|
||||
distance
|
||||
FROM vec_faces
|
||||
WHERE face_embedding MATCH ?
|
||||
AND k = {MIN_MATCHING_FACES} ORDER BY distance
|
||||
"""
|
||||
self.recognizer = cv2.face.LBPHFaceRecognizer_create(radius=4, threshold=config.threshold)
|
||||
self.label_map: dict[int, str] = {}
|
||||
|
||||
def __build_classifier(self) -> None:
|
||||
faces: list[tuple[str, bytes]] = self.db.execute_sql(
|
||||
"SELECT id, face_embedding FROM vec_faces"
|
||||
).fetchall()
|
||||
embeddings = np.array([deserialize(f[1]) for f in faces])
|
||||
self.labeler = LabelEncoder()
|
||||
norms = Normalizer(norm="l2").transform(embeddings)
|
||||
labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces])
|
||||
self.classifier = SVC(
|
||||
kernel="linear", probability=True, decision_function_shape="ovo"
|
||||
)
|
||||
self.classifier.fit(norms, labels)
|
||||
labels = []
|
||||
faces = []
|
||||
|
||||
dir = "/media/frigate/clips/faces"
|
||||
for idx, name in enumerate(os.listdir(dir)):
|
||||
self.label_map[idx] = name
|
||||
face_folder = os.path.join(dir, name)
|
||||
for image in os.listdir(face_folder):
|
||||
img = cv2.imread(os.path.join(face_folder, image))
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
equ = cv2.equalizeHist(gray)
|
||||
faces.append(equ)
|
||||
labels.append(idx)
|
||||
|
||||
self.recognizer.train(faces, np.array(labels))
|
||||
|
||||
def clear_classifier(self) -> None:
|
||||
self.classifier = None
|
||||
self.labeler = None
|
||||
|
||||
def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]:
|
||||
best_faces = self.db.execute_sql(
|
||||
self.embedding_query, [serialize(embedding)]
|
||||
).fetchall()
|
||||
logger.debug(f"Face embedding match: {best_faces}")
|
||||
|
||||
if not best_faces or len(best_faces) < MIN_MATCHING_FACES:
|
||||
logger.debug(
|
||||
f"{len(best_faces)} < {MIN_MATCHING_FACES} min required faces."
|
||||
)
|
||||
return None
|
||||
|
||||
sub_label = str(best_faces[0][0]).split("-")[0]
|
||||
avg_score = 0
|
||||
|
||||
# check that the cosine similarity is close enough to match the face
|
||||
for face in best_faces:
|
||||
score = 1.0 - face[1]
|
||||
|
||||
if face[0].split("-")[0] != sub_label:
|
||||
logger.debug("Detected multiple faces, result is not valid.")
|
||||
return None
|
||||
|
||||
avg_score += score
|
||||
|
||||
avg_score = round(avg_score / MIN_MATCHING_FACES, 2)
|
||||
|
||||
if avg_score < self.config.threshold:
|
||||
logger.debug(
|
||||
f"Recognized face score {avg_score} is less than threshold ({self.config.threshold}))."
|
||||
)
|
||||
return None
|
||||
|
||||
if not self.classifier:
|
||||
def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]:
|
||||
if not self.label_map:
|
||||
self.__build_classifier()
|
||||
|
||||
cosine_index = self.labeler.transform([sub_label])[0]
|
||||
probabilities: np.ndarray = self.classifier.predict_proba([embedding])[0]
|
||||
svc_probability = max(probabilities)
|
||||
logger.debug(
|
||||
f"SVC face classification probability: {svc_probability} and index match: {cosine_index} / {np.where(probabilities == svc_probability)[0]}"
|
||||
)
|
||||
index, distance = self.recognizer.predict(cv2.equalizeHist(cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)))
|
||||
|
||||
if cosine_index == np.where(probabilities == svc_probability)[0]:
|
||||
return (
|
||||
sub_label,
|
||||
min(avg_score, svc_probability),
|
||||
)
|
||||
if index == -1:
|
||||
return None
|
||||
|
||||
return self.label_map[index], distance
|
||||
|
||||
return None
|
||||
|
Loading…
Reference in New Issue
Block a user