Use opencv instead of face embedding

This commit is contained in:
Nicolas Mowen 2024-11-21 12:59:43 -07:00
parent 8b8df6d978
commit 51a28d3027
3 changed files with 32 additions and 84 deletions

View File

@ -24,7 +24,7 @@ class SemanticSearchConfig(FrigateBaseModel):
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
threshold: float = Field(
default=0.9, title="Face similarity score required to be considered a match."
default=170, title="minimum face distance score required to be considered a match."
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."

View File

@ -451,29 +451,20 @@ class EmbeddingMaintainer(threading.Thread):
),
]
ret, webp = cv2.imencode(
".webp", face_frame, [int(cv2.IMWRITE_WEBP_QUALITY), 100]
)
if not ret:
logger.debug("Not processing face due to error creating cropped image.")
return
embedding = self.embeddings.embed_face("unknown", webp.tobytes(), upsert=False)
res = self.face_classifier.classify_face(embedding)
res = self.face_classifier.classify_face(face_frame)
if not res:
return
sub_label, score = res
sub_label, distance = res
logger.debug(
f"Detected best face for person as: {sub_label} with score {score}"
f"Detected best face for person as: {sub_label} with distance {distance}"
)
if id in self.detected_faces and score <= self.detected_faces[id]:
if id in self.detected_faces and distance >= self.detected_faces[id]:
logger.debug(
f"Recognized face score {score} is less than previous face score ({self.detected_faces.get(id)})."
f"Recognized face distance {distance} is greater than previous face distance ({self.detected_faces.get(id)})."
)
return
@ -482,12 +473,11 @@ class EmbeddingMaintainer(threading.Thread):
json={
"camera": obj_data.get("camera"),
"subLabel": sub_label,
"subLabelScore": score,
},
)
if resp.status_code == 200:
self.detected_faces[id] = score
self.detected_faces[id] = distance
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
"""Return the dimensions of the input image as [x, y, width, height]."""

View File

@ -4,6 +4,7 @@ import logging
import os
from typing import Any, Optional
import cv2
import numpy as np
import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
@ -164,81 +165,38 @@ class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.labeler: Optional[LabelEncoder] = None
self.classifier: Optional[SVC] = None
self.embedding_query = f"""
SELECT
id,
distance
FROM vec_faces
WHERE face_embedding MATCH ?
AND k = {MIN_MATCHING_FACES} ORDER BY distance
"""
self.recognizer = cv2.face.LBPHFaceRecognizer_create(radius=4, threshold=config.threshold)
self.label_map: dict[int, str] = {}
def __build_classifier(self) -> None:
faces: list[tuple[str, bytes]] = self.db.execute_sql(
"SELECT id, face_embedding FROM vec_faces"
).fetchall()
embeddings = np.array([deserialize(f[1]) for f in faces])
self.labeler = LabelEncoder()
norms = Normalizer(norm="l2").transform(embeddings)
labels = self.labeler.fit_transform([f[0].split("-")[0] for f in faces])
self.classifier = SVC(
kernel="linear", probability=True, decision_function_shape="ovo"
)
self.classifier.fit(norms, labels)
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
self.label_map[idx] = name
face_folder = os.path.join(dir, name)
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
equ = cv2.equalizeHist(gray)
faces.append(equ)
labels.append(idx)
self.recognizer.train(faces, np.array(labels))
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
def classify_face(self, embedding: np.ndarray) -> Optional[tuple[str, float]]:
best_faces = self.db.execute_sql(
self.embedding_query, [serialize(embedding)]
).fetchall()
logger.debug(f"Face embedding match: {best_faces}")
if not best_faces or len(best_faces) < MIN_MATCHING_FACES:
logger.debug(
f"{len(best_faces)} < {MIN_MATCHING_FACES} min required faces."
)
return None
sub_label = str(best_faces[0][0]).split("-")[0]
avg_score = 0
# check that the cosine similarity is close enough to match the face
for face in best_faces:
score = 1.0 - face[1]
if face[0].split("-")[0] != sub_label:
logger.debug("Detected multiple faces, result is not valid.")
return None
avg_score += score
avg_score = round(avg_score / MIN_MATCHING_FACES, 2)
if avg_score < self.config.threshold:
logger.debug(
f"Recognized face score {avg_score} is less than threshold ({self.config.threshold}))."
)
return None
if not self.classifier:
def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]:
if not self.label_map:
self.__build_classifier()
cosine_index = self.labeler.transform([sub_label])[0]
probabilities: np.ndarray = self.classifier.predict_proba([embedding])[0]
svc_probability = max(probabilities)
logger.debug(
f"SVC face classification probability: {svc_probability} and index match: {cosine_index} / {np.where(probabilities == svc_probability)[0]}"
)
if cosine_index == np.where(probabilities == svc_probability)[0]:
return (
sub_label,
min(avg_score, svc_probability),
)
index, distance = self.recognizer.predict(cv2.equalizeHist(cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)))
if index == -1:
return None
return self.label_map[index], distance