mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	split into separate processes
This commit is contained in:
		
							parent
							
								
									ffa9534549
								
							
						
					
					
						commit
						569e07949f
					
				@ -26,10 +26,11 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
 | 
			
		||||
        scipy \
 | 
			
		||||
    && python3.7 -m pip install -U \
 | 
			
		||||
        SharedArray \
 | 
			
		||||
        # Flask \
 | 
			
		||||
        # paho-mqtt \
 | 
			
		||||
        # PyYAML \
 | 
			
		||||
        # matplotlib \
 | 
			
		||||
        Flask \
 | 
			
		||||
        paho-mqtt \
 | 
			
		||||
        PyYAML \
 | 
			
		||||
        matplotlib \
 | 
			
		||||
        pyarrow \
 | 
			
		||||
    && echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
 | 
			
		||||
    && wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
 | 
			
		||||
    && apt -qq update \
 | 
			
		||||
 | 
			
		||||
@ -2,13 +2,16 @@ import cv2
 | 
			
		||||
import time
 | 
			
		||||
import queue
 | 
			
		||||
import yaml
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
import subprocess as sp
 | 
			
		||||
import numpy as np
 | 
			
		||||
from flask import Flask, Response, make_response, jsonify
 | 
			
		||||
import paho.mqtt.client as mqtt
 | 
			
		||||
 | 
			
		||||
from frigate.video import Camera
 | 
			
		||||
from frigate.object_detection import PreppedQueueProcessor
 | 
			
		||||
from frigate.video import track_camera
 | 
			
		||||
from frigate.object_processing import TrackedObjectProcessor
 | 
			
		||||
from frigate.util import EventsPerSecond
 | 
			
		||||
from frigate.edgetpu import EdgeTPUProcess
 | 
			
		||||
 | 
			
		||||
with open('/config/config.yml') as f:
 | 
			
		||||
    CONFIG = yaml.safe_load(f)
 | 
			
		||||
@ -38,8 +41,7 @@ FFMPEG_DEFAULT_CONFIG = {
 | 
			
		||||
         '-stimeout', '5000000',
 | 
			
		||||
         '-use_wallclock_as_timestamps', '1']),
 | 
			
		||||
    'output_args': FFMPEG_CONFIG.get('output_args',
 | 
			
		||||
        ['-vf', 'mpdecimate',
 | 
			
		||||
         '-f', 'rawvideo',
 | 
			
		||||
        ['-f', 'rawvideo',
 | 
			
		||||
         '-pix_fmt', 'rgb24'])
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -48,6 +50,10 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
 | 
			
		||||
WEB_PORT = CONFIG.get('web_port', 5000)
 | 
			
		||||
DEBUG = (CONFIG.get('debug', '0') == '1')
 | 
			
		||||
 | 
			
		||||
# MODEL_PATH = CONFIG.get('tflite_model', '/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite')
 | 
			
		||||
MODEL_PATH = CONFIG.get('tflite_model', '/lab/detect.tflite')
 | 
			
		||||
LABEL_MAP = CONFIG.get('label_map', '/lab/labelmap.txt')
 | 
			
		||||
 | 
			
		||||
def main():
 | 
			
		||||
    # connect to mqtt and setup last will
 | 
			
		||||
    def on_connect(client, userdata, flags, rc):
 | 
			
		||||
@ -71,27 +77,43 @@ def main():
 | 
			
		||||
    client.connect(MQTT_HOST, MQTT_PORT, 60)
 | 
			
		||||
    client.loop_start()
 | 
			
		||||
 | 
			
		||||
    # Queue for prepped frames, max size set to number of regions * 3
 | 
			
		||||
    prepped_frame_queue = queue.Queue()
 | 
			
		||||
    # start plasma store
 | 
			
		||||
    plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
 | 
			
		||||
    plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
 | 
			
		||||
 | 
			
		||||
    cameras = {}
 | 
			
		||||
    ##
 | 
			
		||||
    # Setup config defaults for cameras
 | 
			
		||||
    ##
 | 
			
		||||
    for name, config in CONFIG['cameras'].items():
 | 
			
		||||
        cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config, 
 | 
			
		||||
            prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
 | 
			
		||||
        config['snapshots'] = {
 | 
			
		||||
            'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
    fps_tracker = EventsPerSecond()
 | 
			
		||||
    # Queue for cameras to push tracked objects to
 | 
			
		||||
    tracked_objects_queue = mp.Queue()
 | 
			
		||||
    
 | 
			
		||||
    prepped_queue_processor = PreppedQueueProcessor(
 | 
			
		||||
        cameras,
 | 
			
		||||
        prepped_frame_queue,
 | 
			
		||||
        fps_tracker
 | 
			
		||||
    )
 | 
			
		||||
    prepped_queue_processor.start()
 | 
			
		||||
    fps_tracker.start()
 | 
			
		||||
    # Start the shared tflite process
 | 
			
		||||
    tflite_process = EdgeTPUProcess(MODEL_PATH)
 | 
			
		||||
 | 
			
		||||
    for name, camera in cameras.items():
 | 
			
		||||
        camera.start()
 | 
			
		||||
        print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
 | 
			
		||||
    camera_processes = []
 | 
			
		||||
    camera_stats_values = {}
 | 
			
		||||
    for name, config in CONFIG['cameras'].items():
 | 
			
		||||
        camera_stats_values[name] = {
 | 
			
		||||
            'fps': mp.Value('d', 10.0),
 | 
			
		||||
            'avg_wait': mp.Value('d', 0.0)
 | 
			
		||||
        }
 | 
			
		||||
        camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, 
 | 
			
		||||
            tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue, 
 | 
			
		||||
            camera_stats_values[name]['fps'], camera_stats_values[name]['avg_wait']))
 | 
			
		||||
        camera_process.daemon = True
 | 
			
		||||
        camera_processes.append(camera_process)
 | 
			
		||||
 | 
			
		||||
    for camera_process in camera_processes:
 | 
			
		||||
        camera_process.start()
 | 
			
		||||
        print(f"Camera_process started {camera_process.pid}")
 | 
			
		||||
    
 | 
			
		||||
    object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
 | 
			
		||||
    object_processor.start()
 | 
			
		||||
 | 
			
		||||
    # create a flask app that encodes frames a mjpeg on demand
 | 
			
		||||
    app = Flask(__name__)
 | 
			
		||||
@ -105,21 +127,23 @@ def main():
 | 
			
		||||
    def stats():
 | 
			
		||||
        stats = {
 | 
			
		||||
            'coral': {
 | 
			
		||||
                'fps': fps_tracker.eps(),
 | 
			
		||||
                'inference_speed': prepped_queue_processor.avg_inference_speed,
 | 
			
		||||
                'queue_length': prepped_frame_queue.qsize()
 | 
			
		||||
                'fps': tflite_process.fps.value,
 | 
			
		||||
                'inference_speed': tflite_process.avg_inference_speed.value
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for name, camera in cameras.items():
 | 
			
		||||
            stats[name] = camera.stats()
 | 
			
		||||
        for name, camera_stats in camera_stats_values.items():
 | 
			
		||||
            stats[name] = {
 | 
			
		||||
                'fps': camera_stats['fps'].value,
 | 
			
		||||
                'avg_wait': camera_stats['avg_wait'].value
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        return jsonify(stats)
 | 
			
		||||
 | 
			
		||||
    @app.route('/<camera_name>/<label>/best.jpg')
 | 
			
		||||
    def best(camera_name, label):
 | 
			
		||||
        if camera_name in cameras:
 | 
			
		||||
            best_frame = cameras[camera_name].get_best(label)
 | 
			
		||||
        if camera_name in CONFIG['cameras']:
 | 
			
		||||
            best_frame = object_processor.get_best(camera_name, label)
 | 
			
		||||
            if best_frame is None:
 | 
			
		||||
                best_frame = np.zeros((720,1280,3), np.uint8)
 | 
			
		||||
            best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
@ -132,7 +156,7 @@ def main():
 | 
			
		||||
 | 
			
		||||
    @app.route('/<camera_name>')
 | 
			
		||||
    def mjpeg_feed(camera_name):
 | 
			
		||||
        if camera_name in cameras:
 | 
			
		||||
        if camera_name in CONFIG['cameras']:
 | 
			
		||||
            # return a multipart response
 | 
			
		||||
            return Response(imagestream(camera_name),
 | 
			
		||||
                            mimetype='multipart/x-mixed-replace; boundary=frame')
 | 
			
		||||
@ -143,13 +167,16 @@ def main():
 | 
			
		||||
        while True:
 | 
			
		||||
            # max out at 1 FPS
 | 
			
		||||
            time.sleep(1)
 | 
			
		||||
            frame = cameras[camera_name].get_current_frame_with_objects()
 | 
			
		||||
            frame = object_processor.current_frame_with_objects(camera_name)
 | 
			
		||||
            yield (b'--frame\r\n'
 | 
			
		||||
                b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
 | 
			
		||||
 | 
			
		||||
    app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
 | 
			
		||||
 | 
			
		||||
    camera.join()
 | 
			
		||||
    for camera_process in camera_processes:
 | 
			
		||||
        camera_process.join()
 | 
			
		||||
    
 | 
			
		||||
    plasma_process.terminate()
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    main()
 | 
			
		||||
 | 
			
		||||
@ -1,8 +1,11 @@
 | 
			
		||||
import os
 | 
			
		||||
import datetime
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
import numpy as np
 | 
			
		||||
import SharedArray as sa
 | 
			
		||||
import tflite_runtime.interpreter as tflite
 | 
			
		||||
from tflite_runtime.interpreter import load_delegate
 | 
			
		||||
from frigate.util import EventsPerSecond
 | 
			
		||||
 | 
			
		||||
def load_labels(path, encoding='utf-8'):
 | 
			
		||||
  """Loads labels from file (with or without index numbers).
 | 
			
		||||
@ -59,6 +62,7 @@ class ObjectDetector():
 | 
			
		||||
 | 
			
		||||
class EdgeTPUProcess():
 | 
			
		||||
    def __init__(self, model):
 | 
			
		||||
        # TODO: see if we can use the plasma store with a queue and maintain the same speeds
 | 
			
		||||
        try:
 | 
			
		||||
            sa.delete("frame")
 | 
			
		||||
        except:
 | 
			
		||||
@ -74,22 +78,32 @@ class EdgeTPUProcess():
 | 
			
		||||
        self.detect_lock = mp.Lock()
 | 
			
		||||
        self.detect_ready = mp.Event()
 | 
			
		||||
        self.frame_ready = mp.Event()
 | 
			
		||||
        self.fps = mp.Value('d', 0.0)
 | 
			
		||||
        self.avg_inference_speed = mp.Value('d', 10.0)
 | 
			
		||||
 | 
			
		||||
        def run_detector(model, detect_ready, frame_ready):
 | 
			
		||||
        def run_detector(model, detect_ready, frame_ready, fps, avg_speed):
 | 
			
		||||
            print(f"Starting detection process: {os.getpid()}")
 | 
			
		||||
            object_detector = ObjectDetector(model)
 | 
			
		||||
            input_frame = sa.attach("frame")
 | 
			
		||||
            detections = sa.attach("detections")
 | 
			
		||||
            fps_tracker = EventsPerSecond()
 | 
			
		||||
            fps_tracker.start()
 | 
			
		||||
 | 
			
		||||
            while True:
 | 
			
		||||
                # wait until a frame is ready
 | 
			
		||||
                frame_ready.wait()
 | 
			
		||||
                start = datetime.datetime.now().timestamp()
 | 
			
		||||
                # signal that the process is busy
 | 
			
		||||
                frame_ready.clear()
 | 
			
		||||
                detections[:] = object_detector.detect_raw(input_frame)
 | 
			
		||||
                # signal that the process is ready to detect
 | 
			
		||||
                detect_ready.set()
 | 
			
		||||
                fps_tracker.update()
 | 
			
		||||
                fps.value = fps_tracker.eps()
 | 
			
		||||
                duration = datetime.datetime.now().timestamp()-start
 | 
			
		||||
                avg_speed.value = (avg_speed.value*9 + duration)/10
 | 
			
		||||
 | 
			
		||||
        self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready))
 | 
			
		||||
        self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
 | 
			
		||||
        self.detect_process.daemon = True
 | 
			
		||||
        self.detect_process.start()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -3,14 +3,15 @@ import imutils
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
class MotionDetector():
 | 
			
		||||
    # TODO: add motion masking
 | 
			
		||||
    def __init__(self, frame_shape, resize_factor=4):
 | 
			
		||||
    def __init__(self, frame_shape, mask, resize_factor=4):
 | 
			
		||||
        self.resize_factor = resize_factor
 | 
			
		||||
        self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
 | 
			
		||||
        self.avg_frame = np.zeros(self.motion_frame_size, np.float)
 | 
			
		||||
        self.avg_delta = np.zeros(self.motion_frame_size, np.float)
 | 
			
		||||
        self.motion_frame_count = 0
 | 
			
		||||
        self.frame_counter = 0
 | 
			
		||||
        resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
 | 
			
		||||
        self.mask = np.where(resized_mask==[0])
 | 
			
		||||
 | 
			
		||||
    def detect(self, frame):
 | 
			
		||||
        motion_boxes = []
 | 
			
		||||
@ -21,6 +22,9 @@ class MotionDetector():
 | 
			
		||||
        # convert to grayscale
 | 
			
		||||
        gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
 | 
			
		||||
        # mask frame
 | 
			
		||||
        gray[self.mask] = [255]
 | 
			
		||||
 | 
			
		||||
        # it takes ~30 frames to establish a baseline
 | 
			
		||||
        # dont bother looking for motion
 | 
			
		||||
        if self.frame_counter < 30:
 | 
			
		||||
@ -58,7 +62,6 @@ class MotionDetector():
 | 
			
		||||
                # if the contour is big enough, count it as motion
 | 
			
		||||
                contour_area = cv2.contourArea(c)
 | 
			
		||||
                if contour_area > 100:
 | 
			
		||||
                    # cv2.drawContours(resized_frame, [c], -1, (255,255,255), 2)
 | 
			
		||||
                    x, y, w, h = cv2.boundingRect(c)
 | 
			
		||||
                    motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
@ -1,54 +0,0 @@
 | 
			
		||||
import json
 | 
			
		||||
import cv2
 | 
			
		||||
import threading
 | 
			
		||||
import prctl
 | 
			
		||||
from collections import Counter, defaultdict
 | 
			
		||||
import itertools
 | 
			
		||||
 | 
			
		||||
class MqttObjectPublisher(threading.Thread):
 | 
			
		||||
    def __init__(self, client, topic_prefix, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.client = client
 | 
			
		||||
        self.topic_prefix = topic_prefix
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        current_object_status = defaultdict(lambda: 'OFF')
 | 
			
		||||
        while True:
 | 
			
		||||
            # wait until objects have been tracked
 | 
			
		||||
            with self.camera.objects_tracked:
 | 
			
		||||
                self.camera.objects_tracked.wait()
 | 
			
		||||
 | 
			
		||||
            # count objects with more than 2 entries in history by type
 | 
			
		||||
            obj_counter = Counter()
 | 
			
		||||
            for obj in self.camera.object_tracker.tracked_objects.values():
 | 
			
		||||
                if len(obj['history']) > 1:
 | 
			
		||||
                    obj_counter[obj['name']] += 1
 | 
			
		||||
            
 | 
			
		||||
            # report on detected objects
 | 
			
		||||
            for obj_name, count in obj_counter.items():
 | 
			
		||||
                new_status = 'ON' if count > 0 else 'OFF'
 | 
			
		||||
                if new_status != current_object_status[obj_name]:
 | 
			
		||||
                    current_object_status[obj_name] = new_status
 | 
			
		||||
                    self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
 | 
			
		||||
                    # send the snapshot over mqtt if we have it as well
 | 
			
		||||
                    if obj_name in self.camera.best_frames.best_frames:
 | 
			
		||||
                        best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
 | 
			
		||||
                        ret, jpg = cv2.imencode('.jpg', best_frame)
 | 
			
		||||
                        if ret:
 | 
			
		||||
                            jpg_bytes = jpg.tobytes()
 | 
			
		||||
                            self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
 | 
			
		||||
 | 
			
		||||
            # expire any objects that are ON and no longer detected
 | 
			
		||||
            expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
 | 
			
		||||
            for obj_name in expired_objects:
 | 
			
		||||
                current_object_status[obj_name] = 'OFF'
 | 
			
		||||
                self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
 | 
			
		||||
                # send updated snapshot snapshot over mqtt if we have it as well
 | 
			
		||||
                if obj_name in self.camera.best_frames.best_frames:
 | 
			
		||||
                    best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
 | 
			
		||||
                    ret, jpg = cv2.imencode('.jpg', best_frame)
 | 
			
		||||
                    if ret:
 | 
			
		||||
                        jpg_bytes = jpg.tobytes()
 | 
			
		||||
                        self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
 | 
			
		||||
@ -3,7 +3,7 @@ import time
 | 
			
		||||
import cv2
 | 
			
		||||
import threading
 | 
			
		||||
import copy
 | 
			
		||||
import prctl
 | 
			
		||||
# import prctl
 | 
			
		||||
import numpy as np
 | 
			
		||||
from edgetpu.detection.engine import DetectionEngine
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										146
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										146
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,146 @@
 | 
			
		||||
import json
 | 
			
		||||
import hashlib
 | 
			
		||||
import datetime
 | 
			
		||||
import copy
 | 
			
		||||
import cv2
 | 
			
		||||
import threading
 | 
			
		||||
import numpy as np
 | 
			
		||||
from collections import Counter, defaultdict
 | 
			
		||||
import itertools
 | 
			
		||||
import pyarrow.plasma as plasma
 | 
			
		||||
import SharedArray as sa
 | 
			
		||||
import matplotlib.pyplot as plt
 | 
			
		||||
from frigate.util import draw_box_with_label, ReadLabelFile
 | 
			
		||||
 | 
			
		||||
PATH_TO_LABELS = '/lab/labelmap.txt'
 | 
			
		||||
 | 
			
		||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
 | 
			
		||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
 | 
			
		||||
 | 
			
		||||
COLOR_MAP = {}
 | 
			
		||||
for key, val in LABELS.items():
 | 
			
		||||
    COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
 | 
			
		||||
 | 
			
		||||
class TrackedObjectProcessor(threading.Thread):
 | 
			
		||||
    def __init__(self, config, client, topic_prefix, tracked_objects_queue):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.client = client
 | 
			
		||||
        self.topic_prefix = topic_prefix
 | 
			
		||||
        self.tracked_objects_queue = tracked_objects_queue
 | 
			
		||||
        self.plasma_client = plasma.connect("/tmp/plasma")
 | 
			
		||||
        self.camera_data = defaultdict(lambda: {
 | 
			
		||||
            'best_objects': {},
 | 
			
		||||
            'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
 | 
			
		||||
            'tracked_objects': {}
 | 
			
		||||
        })
 | 
			
		||||
        
 | 
			
		||||
    def get_best(self, camera, label):
 | 
			
		||||
        if label in self.camera_data[camera]['best_objects']:
 | 
			
		||||
            return self.camera_data[camera]['best_objects'][label]['frame']
 | 
			
		||||
        else:
 | 
			
		||||
            return None
 | 
			
		||||
 | 
			
		||||
    def get_frame(self, config, camera, obj):
 | 
			
		||||
        object_id_hash = hashlib.sha1(str.encode(f"{camera}{obj['frame_time']}"))
 | 
			
		||||
        object_id_bytes = object_id_hash.digest()
 | 
			
		||||
        object_id = plasma.ObjectID(object_id_bytes)
 | 
			
		||||
        best_frame = self.plasma_client.get(object_id)
 | 
			
		||||
        box = obj['box']
 | 
			
		||||
        draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}")
 | 
			
		||||
        # print a timestamp
 | 
			
		||||
        if config['snapshots']['show_timestamp']:
 | 
			
		||||
            time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
            cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
        return best_frame
 | 
			
		||||
    
 | 
			
		||||
    def current_frame_with_objects(self, camera):
 | 
			
		||||
        frame_time = self.camera_data[camera]['current_frame']
 | 
			
		||||
        object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
 | 
			
		||||
        object_id_bytes = object_id_hash.digest()
 | 
			
		||||
        object_id = plasma.ObjectID(object_id_bytes)
 | 
			
		||||
        current_frame = self.plasma_client.get(object_id)
 | 
			
		||||
            
 | 
			
		||||
        tracked_objects = copy.deepcopy(self.camera_data[camera]['tracked_objects'])
 | 
			
		||||
 | 
			
		||||
        # draw the bounding boxes on the screen
 | 
			
		||||
        for obj in tracked_objects.values():
 | 
			
		||||
            thickness = 2
 | 
			
		||||
            color = COLOR_MAP[obj['label']]
 | 
			
		||||
            
 | 
			
		||||
            if obj['frame_time'] != frame_time:
 | 
			
		||||
                thickness = 1
 | 
			
		||||
                color = (255,0,0)
 | 
			
		||||
 | 
			
		||||
            box = obj['box']
 | 
			
		||||
            draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
 | 
			
		||||
        
 | 
			
		||||
        # # print fps
 | 
			
		||||
        # cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
 | 
			
		||||
        # convert to BGR
 | 
			
		||||
        frame = cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
 | 
			
		||||
        # encode the image into a jpg
 | 
			
		||||
        ret, jpg = cv2.imencode('.jpg', frame)
 | 
			
		||||
 | 
			
		||||
        return jpg.tobytes()
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        while True:
 | 
			
		||||
            camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
 | 
			
		||||
 | 
			
		||||
            config = self.config[camera]
 | 
			
		||||
            best_objects = self.camera_data[camera]['best_objects']
 | 
			
		||||
            current_object_status = self.camera_data[camera]['object_status']
 | 
			
		||||
            self.camera_data[camera]['tracked_objects'] = tracked_objects
 | 
			
		||||
            self.camera_data[camera]['current_frame'] = frame_time
 | 
			
		||||
            
 | 
			
		||||
            ###
 | 
			
		||||
            # Maintain the highest scoring recent object and frame for each label
 | 
			
		||||
            ###
 | 
			
		||||
            for obj in tracked_objects.values():
 | 
			
		||||
                if obj['label'] in best_objects:
 | 
			
		||||
                    now = datetime.datetime.now().timestamp()
 | 
			
		||||
                    # if the object is a higher score than the current best score 
 | 
			
		||||
                    # or the current object is more than 1 minute old, use the new object
 | 
			
		||||
                    if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
 | 
			
		||||
                        obj['frame'] = self.get_frame(config, camera, obj)
 | 
			
		||||
                        best_objects[obj['label']] = obj
 | 
			
		||||
                else:
 | 
			
		||||
                    obj['frame'] = self.get_frame(config, camera, obj)
 | 
			
		||||
                    best_objects[obj['label']] = obj
 | 
			
		||||
 | 
			
		||||
            ###
 | 
			
		||||
            # Report over MQTT
 | 
			
		||||
            ###
 | 
			
		||||
            # count objects with more than 2 entries in history by type
 | 
			
		||||
            obj_counter = Counter()
 | 
			
		||||
            for obj in tracked_objects.values():
 | 
			
		||||
                if len(obj['history']) > 1:
 | 
			
		||||
                    obj_counter[obj['label']] += 1
 | 
			
		||||
                    
 | 
			
		||||
            # report on detected objects
 | 
			
		||||
            for obj_name, count in obj_counter.items():
 | 
			
		||||
                new_status = 'ON' if count > 0 else 'OFF'
 | 
			
		||||
                if new_status != current_object_status[obj_name]:
 | 
			
		||||
                    current_object_status[obj_name] = new_status
 | 
			
		||||
                    self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
 | 
			
		||||
                    # send the best snapshot over mqtt
 | 
			
		||||
                    best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
 | 
			
		||||
                    ret, jpg = cv2.imencode('.jpg', best_frame)
 | 
			
		||||
                    if ret:
 | 
			
		||||
                        jpg_bytes = jpg.tobytes()
 | 
			
		||||
                        self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
 | 
			
		||||
 | 
			
		||||
            # expire any objects that are ON and no longer detected
 | 
			
		||||
            expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
 | 
			
		||||
            for obj_name in expired_objects:
 | 
			
		||||
                current_object_status[obj_name] = 'OFF'
 | 
			
		||||
                self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
 | 
			
		||||
                # send updated snapshot over mqtt
 | 
			
		||||
                best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
 | 
			
		||||
                ret, jpg = cv2.imencode('.jpg', best_frame)
 | 
			
		||||
                if ret:
 | 
			
		||||
                    jpg_bytes = jpg.tobytes()
 | 
			
		||||
                    self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
 | 
			
		||||
@ -2,277 +2,266 @@ import time
 | 
			
		||||
import datetime
 | 
			
		||||
import threading
 | 
			
		||||
import cv2
 | 
			
		||||
import prctl
 | 
			
		||||
# import prctl
 | 
			
		||||
import itertools
 | 
			
		||||
import copy
 | 
			
		||||
import numpy as np
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from scipy.spatial import distance as dist
 | 
			
		||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
 | 
			
		||||
from frigate.util import draw_box_with_label, LABELS, calculate_region
 | 
			
		||||
 | 
			
		||||
class ObjectCleaner(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
# class ObjectCleaner(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name("ObjectCleaner")
 | 
			
		||||
        while True:
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name("ObjectCleaner")
 | 
			
		||||
#         while True:
 | 
			
		||||
 | 
			
		||||
            # wait a bit before checking for expired frames
 | 
			
		||||
            time.sleep(0.2)
 | 
			
		||||
#             # wait a bit before checking for expired frames
 | 
			
		||||
#             time.sleep(0.2)
 | 
			
		||||
 | 
			
		||||
            for frame_time in list(self.camera.detected_objects.keys()).copy():
 | 
			
		||||
                if not frame_time in self.camera.frame_cache:
 | 
			
		||||
                    del self.camera.detected_objects[frame_time]
 | 
			
		||||
#             for frame_time in list(self.camera.detected_objects.keys()).copy():
 | 
			
		||||
#                 if not frame_time in self.camera.frame_cache:
 | 
			
		||||
#                     del self.camera.detected_objects[frame_time]
 | 
			
		||||
            
 | 
			
		||||
            objects_deregistered = False
 | 
			
		||||
            with self.camera.object_tracker.tracked_objects_lock:
 | 
			
		||||
                now = datetime.datetime.now().timestamp()
 | 
			
		||||
                for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
 | 
			
		||||
                    # if the object is more than 10 seconds old
 | 
			
		||||
                    # and not in the most recent frame, deregister
 | 
			
		||||
                    if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
 | 
			
		||||
                        self.camera.object_tracker.deregister(id)
 | 
			
		||||
                        objects_deregistered = True
 | 
			
		||||
#             objects_deregistered = False
 | 
			
		||||
#             with self.camera.object_tracker.tracked_objects_lock:
 | 
			
		||||
#                 now = datetime.datetime.now().timestamp()
 | 
			
		||||
#                 for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
 | 
			
		||||
#                     # if the object is more than 10 seconds old
 | 
			
		||||
#                     # and not in the most recent frame, deregister
 | 
			
		||||
#                     if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
 | 
			
		||||
#                         self.camera.object_tracker.deregister(id)
 | 
			
		||||
#                         objects_deregistered = True
 | 
			
		||||
            
 | 
			
		||||
            if objects_deregistered:
 | 
			
		||||
                with self.camera.objects_tracked:
 | 
			
		||||
                    self.camera.objects_tracked.notify_all()
 | 
			
		||||
#             if objects_deregistered:
 | 
			
		||||
#                 with self.camera.objects_tracked:
 | 
			
		||||
#                     self.camera.objects_tracked.notify_all()
 | 
			
		||||
 | 
			
		||||
class DetectedObjectsProcessor(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
# class DetectedObjectsProcessor(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            frame = self.camera.detected_objects_queue.get()
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             frame = self.camera.detected_objects_queue.get()
 | 
			
		||||
 | 
			
		||||
            objects = frame['detected_objects']
 | 
			
		||||
#             objects = frame['detected_objects']
 | 
			
		||||
 | 
			
		||||
            for raw_obj in objects:
 | 
			
		||||
                name = str(LABELS[raw_obj.label_id])
 | 
			
		||||
#             for raw_obj in objects:
 | 
			
		||||
#                 name = str(LABELS[raw_obj.label_id])
 | 
			
		||||
 | 
			
		||||
                if not name in self.camera.objects_to_track:
 | 
			
		||||
                    continue
 | 
			
		||||
#                 if not name in self.camera.objects_to_track:
 | 
			
		||||
#                     continue
 | 
			
		||||
 | 
			
		||||
                obj = {
 | 
			
		||||
                    'name': name,
 | 
			
		||||
                    'score': float(raw_obj.score),
 | 
			
		||||
                    'box': {
 | 
			
		||||
                        'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                        'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
                        'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
                        'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
 | 
			
		||||
                    },
 | 
			
		||||
                    'region': {
 | 
			
		||||
                        'xmin': frame['x_offset'],
 | 
			
		||||
                        'ymin': frame['y_offset'],
 | 
			
		||||
                        'xmax': frame['x_offset']+frame['size'],
 | 
			
		||||
                        'ymax': frame['y_offset']+frame['size']
 | 
			
		||||
                    },
 | 
			
		||||
                    'frame_time': frame['frame_time'],
 | 
			
		||||
                    'region_id': frame['region_id']
 | 
			
		||||
                }
 | 
			
		||||
#                 obj = {
 | 
			
		||||
#                     'name': name,
 | 
			
		||||
#                     'score': float(raw_obj.score),
 | 
			
		||||
#                     'box': {
 | 
			
		||||
#                         'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
#                         'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
 | 
			
		||||
#                         'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
 | 
			
		||||
#                         'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
 | 
			
		||||
#                     },
 | 
			
		||||
#                     'region': {
 | 
			
		||||
#                         'xmin': frame['x_offset'],
 | 
			
		||||
#                         'ymin': frame['y_offset'],
 | 
			
		||||
#                         'xmax': frame['x_offset']+frame['size'],
 | 
			
		||||
#                         'ymax': frame['y_offset']+frame['size']
 | 
			
		||||
#                     },
 | 
			
		||||
#                     'frame_time': frame['frame_time'],
 | 
			
		||||
#                     'region_id': frame['region_id']
 | 
			
		||||
#                 }
 | 
			
		||||
                
 | 
			
		||||
                # if the object is within 5 pixels of the region border, and the region is not on the edge
 | 
			
		||||
                # consider the object to be clipped
 | 
			
		||||
                obj['clipped'] = False
 | 
			
		||||
                if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or 
 | 
			
		||||
                    (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
 | 
			
		||||
                    (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
 | 
			
		||||
                    (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
 | 
			
		||||
                    obj['clipped'] = True
 | 
			
		||||
#                 # if the object is within 5 pixels of the region border, and the region is not on the edge
 | 
			
		||||
#                 # consider the object to be clipped
 | 
			
		||||
#                 obj['clipped'] = False
 | 
			
		||||
#                 if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or 
 | 
			
		||||
#                     (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
 | 
			
		||||
#                     (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
 | 
			
		||||
#                     (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
 | 
			
		||||
#                     obj['clipped'] = True
 | 
			
		||||
                
 | 
			
		||||
                # Compute the area
 | 
			
		||||
                # TODO: +1 right?
 | 
			
		||||
                obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
 | 
			
		||||
#                 # Compute the area
 | 
			
		||||
#                 # TODO: +1 right?
 | 
			
		||||
#                 obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
 | 
			
		||||
 | 
			
		||||
                self.camera.detected_objects[frame['frame_time']].append(obj)
 | 
			
		||||
#                 self.camera.detected_objects[frame['frame_time']].append(obj)
 | 
			
		||||
            
 | 
			
		||||
            # TODO: use in_process and processed counts instead to avoid lock 
 | 
			
		||||
            with self.camera.regions_in_process_lock:
 | 
			
		||||
                if frame['frame_time'] in self.camera.regions_in_process:
 | 
			
		||||
                    self.camera.regions_in_process[frame['frame_time']] -= 1
 | 
			
		||||
                # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
 | 
			
		||||
#             # TODO: use in_process and processed counts instead to avoid lock 
 | 
			
		||||
#             with self.camera.regions_in_process_lock:
 | 
			
		||||
#                 if frame['frame_time'] in self.camera.regions_in_process:
 | 
			
		||||
#                     self.camera.regions_in_process[frame['frame_time']] -= 1
 | 
			
		||||
#                 # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
 | 
			
		||||
 | 
			
		||||
                    if self.camera.regions_in_process[frame['frame_time']] == 0:
 | 
			
		||||
                        del self.camera.regions_in_process[frame['frame_time']]
 | 
			
		||||
                        # print(f"{frame['frame_time']} no remaining regions")
 | 
			
		||||
                        self.camera.finished_frame_queue.put(frame['frame_time'])
 | 
			
		||||
                else:
 | 
			
		||||
                    self.camera.finished_frame_queue.put(frame['frame_time'])
 | 
			
		||||
#                     if self.camera.regions_in_process[frame['frame_time']] == 0:
 | 
			
		||||
#                         del self.camera.regions_in_process[frame['frame_time']]
 | 
			
		||||
#                         # print(f"{frame['frame_time']} no remaining regions")
 | 
			
		||||
#                         self.camera.finished_frame_queue.put(frame['frame_time'])
 | 
			
		||||
#                 else:
 | 
			
		||||
#                     self.camera.finished_frame_queue.put(frame['frame_time'])
 | 
			
		||||
 | 
			
		||||
# Thread that checks finished frames for clipped objects and sends back
 | 
			
		||||
# for processing if needed
 | 
			
		||||
# TODO: evaluate whether or not i really need separate threads/queues for each step
 | 
			
		||||
#       given that only 1 thread will really be able to run at a time. you need a 
 | 
			
		||||
#       separate process to actually do things in parallel for when you are CPU bound. 
 | 
			
		||||
#       threads are good when you are waiting and could be processing while you wait
 | 
			
		||||
class RegionRefiner(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
# # Thread that checks finished frames for clipped objects and sends back
 | 
			
		||||
# # for processing if needed
 | 
			
		||||
# # TODO: evaluate whether or not i really need separate threads/queues for each step
 | 
			
		||||
# #       given that only 1 thread will really be able to run at a time. you need a 
 | 
			
		||||
# #       separate process to actually do things in parallel for when you are CPU bound. 
 | 
			
		||||
# #       threads are good when you are waiting and could be processing while you wait
 | 
			
		||||
# class RegionRefiner(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            frame_time = self.camera.finished_frame_queue.get()
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             frame_time = self.camera.finished_frame_queue.get()
 | 
			
		||||
 | 
			
		||||
            detected_objects = self.camera.detected_objects[frame_time].copy()
 | 
			
		||||
            # print(f"{frame_time} finished")
 | 
			
		||||
#             detected_objects = self.camera.detected_objects[frame_time].copy()
 | 
			
		||||
#             # print(f"{frame_time} finished")
 | 
			
		||||
 | 
			
		||||
            # group by name
 | 
			
		||||
            detected_object_groups = defaultdict(lambda: [])
 | 
			
		||||
            for obj in detected_objects:
 | 
			
		||||
                detected_object_groups[obj['name']].append(obj)
 | 
			
		||||
#             # group by name
 | 
			
		||||
#             detected_object_groups = defaultdict(lambda: [])
 | 
			
		||||
#             for obj in detected_objects:
 | 
			
		||||
#                 detected_object_groups[obj['name']].append(obj)
 | 
			
		||||
 | 
			
		||||
            look_again = False
 | 
			
		||||
            selected_objects = []
 | 
			
		||||
            for group in detected_object_groups.values():
 | 
			
		||||
#             look_again = False
 | 
			
		||||
#             selected_objects = []
 | 
			
		||||
#             for group in detected_object_groups.values():
 | 
			
		||||
 | 
			
		||||
                # apply non-maxima suppression to suppress weak, overlapping bounding boxes
 | 
			
		||||
                boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
 | 
			
		||||
                    for o in group]
 | 
			
		||||
                confidences = [o['score'] for o in group]
 | 
			
		||||
                idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
 | 
			
		||||
#                 # apply non-maxima suppression to suppress weak, overlapping bounding boxes
 | 
			
		||||
#                 boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
 | 
			
		||||
#                     for o in group]
 | 
			
		||||
#                 confidences = [o['score'] for o in group]
 | 
			
		||||
#                 idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
 | 
			
		||||
 | 
			
		||||
                for index in idxs:
 | 
			
		||||
                    obj = group[index[0]]
 | 
			
		||||
                    selected_objects.append(obj)
 | 
			
		||||
                    if obj['clipped']:
 | 
			
		||||
                        box = obj['box']
 | 
			
		||||
                        # calculate a new region that will hopefully get the entire object
 | 
			
		||||
                        (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape, 
 | 
			
		||||
                            box['xmin'], box['ymin'],
 | 
			
		||||
                            box['xmax'], box['ymax'])
 | 
			
		||||
                        # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
 | 
			
		||||
#                 for index in idxs:
 | 
			
		||||
#                     obj = group[index[0]]
 | 
			
		||||
#                     selected_objects.append(obj)
 | 
			
		||||
#                     if obj['clipped']:
 | 
			
		||||
#                         box = obj['box']
 | 
			
		||||
#                         # calculate a new region that will hopefully get the entire object
 | 
			
		||||
#                         (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape, 
 | 
			
		||||
#                             box['xmin'], box['ymin'],
 | 
			
		||||
#                             box['xmax'], box['ymax'])
 | 
			
		||||
#                         # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
 | 
			
		||||
 | 
			
		||||
                        with self.camera.regions_in_process_lock:
 | 
			
		||||
                            if not frame_time in self.camera.regions_in_process:
 | 
			
		||||
                                self.camera.regions_in_process[frame_time] = 1
 | 
			
		||||
                            else:
 | 
			
		||||
                                self.camera.regions_in_process[frame_time] += 1
 | 
			
		||||
#                         with self.camera.regions_in_process_lock:
 | 
			
		||||
#                             if not frame_time in self.camera.regions_in_process:
 | 
			
		||||
#                                 self.camera.regions_in_process[frame_time] = 1
 | 
			
		||||
#                             else:
 | 
			
		||||
#                                 self.camera.regions_in_process[frame_time] += 1
 | 
			
		||||
 | 
			
		||||
                        # add it to the queue
 | 
			
		||||
                        self.camera.resize_queue.put({
 | 
			
		||||
                            'camera_name': self.camera.name,
 | 
			
		||||
                            'frame_time': frame_time,
 | 
			
		||||
                            'region_id': -1,
 | 
			
		||||
                            'size': size,
 | 
			
		||||
                            'x_offset': x_offset,
 | 
			
		||||
                            'y_offset': y_offset
 | 
			
		||||
                        })
 | 
			
		||||
                        self.camera.dynamic_region_fps.update()
 | 
			
		||||
                        look_again = True
 | 
			
		||||
#                         # add it to the queue
 | 
			
		||||
#                         self.camera.resize_queue.put({
 | 
			
		||||
#                             'camera_name': self.camera.name,
 | 
			
		||||
#                             'frame_time': frame_time,
 | 
			
		||||
#                             'region_id': -1,
 | 
			
		||||
#                             'size': size,
 | 
			
		||||
#                             'x_offset': x_offset,
 | 
			
		||||
#                             'y_offset': y_offset
 | 
			
		||||
#                         })
 | 
			
		||||
#                         self.camera.dynamic_region_fps.update()
 | 
			
		||||
#                         look_again = True
 | 
			
		||||
 | 
			
		||||
            # if we are looking again, then this frame is not ready for processing
 | 
			
		||||
            if look_again:
 | 
			
		||||
                # remove the clipped objects
 | 
			
		||||
                self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
 | 
			
		||||
                continue
 | 
			
		||||
#             # if we are looking again, then this frame is not ready for processing
 | 
			
		||||
#             if look_again:
 | 
			
		||||
#                 # remove the clipped objects
 | 
			
		||||
#                 self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
 | 
			
		||||
#                 continue
 | 
			
		||||
 | 
			
		||||
            # filter objects based on camera settings
 | 
			
		||||
            selected_objects = [o for o in selected_objects if not self.filtered(o)]
 | 
			
		||||
#             # filter objects based on camera settings
 | 
			
		||||
#             selected_objects = [o for o in selected_objects if not self.filtered(o)]
 | 
			
		||||
 | 
			
		||||
            self.camera.detected_objects[frame_time] = selected_objects
 | 
			
		||||
#             self.camera.detected_objects[frame_time] = selected_objects
 | 
			
		||||
            
 | 
			
		||||
            # print(f"{frame_time} is actually finished")
 | 
			
		||||
#             # print(f"{frame_time} is actually finished")
 | 
			
		||||
 | 
			
		||||
            # keep adding frames to the refined queue as long as they are finished
 | 
			
		||||
            with self.camera.regions_in_process_lock:
 | 
			
		||||
                while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
 | 
			
		||||
                    self.camera.last_processed_frame = self.camera.frame_queue.get()
 | 
			
		||||
                    self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
 | 
			
		||||
#             # keep adding frames to the refined queue as long as they are finished
 | 
			
		||||
#             with self.camera.regions_in_process_lock:
 | 
			
		||||
#                 while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
 | 
			
		||||
#                     self.camera.last_processed_frame = self.camera.frame_queue.get()
 | 
			
		||||
#                     self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
 | 
			
		||||
 | 
			
		||||
    def filtered(self, obj):
 | 
			
		||||
        object_name = obj['name']
 | 
			
		||||
#     def filtered(self, obj):
 | 
			
		||||
#         object_name = obj['name']
 | 
			
		||||
        
 | 
			
		||||
        if object_name in self.camera.object_filters:
 | 
			
		||||
            obj_settings = self.camera.object_filters[object_name]
 | 
			
		||||
#         if object_name in self.camera.object_filters:
 | 
			
		||||
#             obj_settings = self.camera.object_filters[object_name]
 | 
			
		||||
 | 
			
		||||
            # if the min area is larger than the
 | 
			
		||||
            # detected object, don't add it to detected objects
 | 
			
		||||
            if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
                return True
 | 
			
		||||
#             # if the min area is larger than the
 | 
			
		||||
#             # detected object, don't add it to detected objects
 | 
			
		||||
#             if obj_settings.get('min_area',-1) > obj['area']:
 | 
			
		||||
#                 return True
 | 
			
		||||
            
 | 
			
		||||
            # if the detected object is larger than the
 | 
			
		||||
            # max area, don't add it to detected objects
 | 
			
		||||
            if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
 | 
			
		||||
                return True
 | 
			
		||||
#             # if the detected object is larger than the
 | 
			
		||||
#             # max area, don't add it to detected objects
 | 
			
		||||
#             if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
 | 
			
		||||
#                 return True
 | 
			
		||||
 | 
			
		||||
            # if the score is lower than the threshold, skip
 | 
			
		||||
            if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
                return True
 | 
			
		||||
#             # if the score is lower than the threshold, skip
 | 
			
		||||
#             if obj_settings.get('threshold', 0) > obj['score']:
 | 
			
		||||
#                 return True
 | 
			
		||||
        
 | 
			
		||||
            # compute the coordinates of the object and make sure
 | 
			
		||||
            # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
            y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
 | 
			
		||||
            x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
 | 
			
		||||
#             # compute the coordinates of the object and make sure
 | 
			
		||||
#             # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
#             y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
 | 
			
		||||
#             x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
 | 
			
		||||
 | 
			
		||||
            # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
            if self.camera.mask[y_location][x_location] == [0]:
 | 
			
		||||
                return True
 | 
			
		||||
#             # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
#             if self.camera.mask[y_location][x_location] == [0]:
 | 
			
		||||
#                 return True
 | 
			
		||||
            
 | 
			
		||||
            return False
 | 
			
		||||
#             return False
 | 
			
		||||
             
 | 
			
		||||
    def has_overlap(self, new_obj, obj, overlap=.7):
 | 
			
		||||
        # compute intersection rectangle with existing object and new objects region
 | 
			
		||||
        existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
 | 
			
		||||
#     def has_overlap(self, new_obj, obj, overlap=.7):
 | 
			
		||||
#         # compute intersection rectangle with existing object and new objects region
 | 
			
		||||
#         existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
 | 
			
		||||
 | 
			
		||||
        # compute intersection rectangle with new object and existing objects region
 | 
			
		||||
        new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
 | 
			
		||||
#         # compute intersection rectangle with new object and existing objects region
 | 
			
		||||
#         new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
 | 
			
		||||
 | 
			
		||||
        # compute iou for the two intersection rectangles that were just computed
 | 
			
		||||
        iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
 | 
			
		||||
#         # compute iou for the two intersection rectangles that were just computed
 | 
			
		||||
#         iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
 | 
			
		||||
 | 
			
		||||
        # if intersection is greater than overlap
 | 
			
		||||
        if iou > overlap:
 | 
			
		||||
            return True
 | 
			
		||||
        else:
 | 
			
		||||
            return False
 | 
			
		||||
#         # if intersection is greater than overlap
 | 
			
		||||
#         if iou > overlap:
 | 
			
		||||
#             return True
 | 
			
		||||
#         else:
 | 
			
		||||
#             return False
 | 
			
		||||
    
 | 
			
		||||
    def find_group(self, new_obj, groups):
 | 
			
		||||
        for index, group in enumerate(groups):
 | 
			
		||||
            for obj in group:
 | 
			
		||||
                if self.has_overlap(new_obj, obj):
 | 
			
		||||
                    return index
 | 
			
		||||
        return None
 | 
			
		||||
#     def find_group(self, new_obj, groups):
 | 
			
		||||
#         for index, group in enumerate(groups):
 | 
			
		||||
#             for obj in group:
 | 
			
		||||
#                 if self.has_overlap(new_obj, obj):
 | 
			
		||||
#                     return index
 | 
			
		||||
#         return None
 | 
			
		||||
 | 
			
		||||
class ObjectTracker(threading.Thread):
 | 
			
		||||
    def __init__(self, camera, max_disappeared):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
class ObjectTracker():
 | 
			
		||||
    def __init__(self, max_disappeared):
 | 
			
		||||
        self.tracked_objects = {}
 | 
			
		||||
        self.tracked_objects_lock = mp.Lock()
 | 
			
		||||
        self.most_recent_frame_time = None
 | 
			
		||||
    
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            frame_time = self.camera.refined_frame_queue.get()
 | 
			
		||||
            with self.tracked_objects_lock:
 | 
			
		||||
                self.match_and_update(self.camera.detected_objects[frame_time])
 | 
			
		||||
                self.most_recent_frame_time = frame_time
 | 
			
		||||
                self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
 | 
			
		||||
            if len(self.tracked_objects) > 0:
 | 
			
		||||
                with self.camera.objects_tracked:
 | 
			
		||||
                    self.camera.objects_tracked.notify_all()
 | 
			
		||||
        self.disappeared = {}
 | 
			
		||||
        self.max_disappeared = max_disappeared
 | 
			
		||||
 | 
			
		||||
    def register(self, index, obj):
 | 
			
		||||
        id = "{}-{}".format(str(obj['frame_time']), index)
 | 
			
		||||
        id = f"{obj['frame_time']}-{index}"
 | 
			
		||||
        obj['id'] = id
 | 
			
		||||
        obj['top_score'] = obj['score']
 | 
			
		||||
        self.add_history(obj)
 | 
			
		||||
        self.tracked_objects[id] = obj
 | 
			
		||||
        self.disappeared[id] = 0
 | 
			
		||||
 | 
			
		||||
    def deregister(self, id):
 | 
			
		||||
        del self.tracked_objects[id]
 | 
			
		||||
        del self.disappeared[id]
 | 
			
		||||
    
 | 
			
		||||
    def update(self, id, new_obj):
 | 
			
		||||
        self.disappeared[id] = 0
 | 
			
		||||
        self.tracked_objects[id].update(new_obj)
 | 
			
		||||
        self.add_history(self.tracked_objects[id])
 | 
			
		||||
        if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
 | 
			
		||||
@ -291,25 +280,37 @@ class ObjectTracker(threading.Thread):
 | 
			
		||||
        else:
 | 
			
		||||
            obj['history'] = [entry]
 | 
			
		||||
 | 
			
		||||
    def match_and_update(self, new_objects):
 | 
			
		||||
    def match_and_update(self, frame_time, new_objects):
 | 
			
		||||
        if len(new_objects) == 0:
 | 
			
		||||
            for id in list(self.tracked_objects.keys()):
 | 
			
		||||
                if self.disappeared[id] >= self.max_disappeared:
 | 
			
		||||
                    self.deregister(id)
 | 
			
		||||
                else:
 | 
			
		||||
                    self.disappeared[id] += 1
 | 
			
		||||
            return
 | 
			
		||||
            
 | 
			
		||||
        # group by name
 | 
			
		||||
        new_object_groups = defaultdict(lambda: [])
 | 
			
		||||
        for obj in new_objects:
 | 
			
		||||
            new_object_groups[obj['name']].append(obj)
 | 
			
		||||
            new_object_groups[obj[0]].append({
 | 
			
		||||
                'label': obj[0],
 | 
			
		||||
                'score': obj[1],
 | 
			
		||||
                'box': obj[2],
 | 
			
		||||
                'area': obj[3],
 | 
			
		||||
                'region': obj[4],
 | 
			
		||||
                'frame_time': frame_time
 | 
			
		||||
            })
 | 
			
		||||
        
 | 
			
		||||
        # track objects for each label type
 | 
			
		||||
        for label, group in new_object_groups.items():
 | 
			
		||||
            current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
 | 
			
		||||
            current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
 | 
			
		||||
            current_ids = [o['id'] for o in current_objects]
 | 
			
		||||
            current_centroids = np.array([o['centroid'] for o in current_objects])
 | 
			
		||||
 | 
			
		||||
            # compute centroids of new objects
 | 
			
		||||
            for obj in group:
 | 
			
		||||
                centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
 | 
			
		||||
                centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
 | 
			
		||||
                centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
 | 
			
		||||
                centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
 | 
			
		||||
                obj['centroid'] = (centroid_x, centroid_y)
 | 
			
		||||
 | 
			
		||||
            if len(current_objects) == 0:
 | 
			
		||||
@ -363,56 +364,66 @@ class ObjectTracker(threading.Thread):
 | 
			
		||||
                usedCols.add(col)
 | 
			
		||||
 | 
			
		||||
            # compute the column index we have NOT yet examined
 | 
			
		||||
            unusedRows = set(range(0, D.shape[0])).difference(usedRows)
 | 
			
		||||
            unusedCols = set(range(0, D.shape[1])).difference(usedCols)
 | 
			
		||||
 | 
			
		||||
            # in the event that the number of object centroids is
 | 
			
		||||
			# equal or greater than the number of input centroids
 | 
			
		||||
			# we need to check and see if some of these objects have
 | 
			
		||||
			# potentially disappeared
 | 
			
		||||
            if D.shape[0] >= D.shape[1]:
 | 
			
		||||
                for row in unusedRows:
 | 
			
		||||
                    id = current_ids[row]
 | 
			
		||||
 | 
			
		||||
                    if self.disappeared[id] >= self.max_disappeared:
 | 
			
		||||
                        self.deregister(id)
 | 
			
		||||
                    else:
 | 
			
		||||
                        self.disappeared[id] += 1
 | 
			
		||||
            # if the number of input centroids is greater
 | 
			
		||||
            # than the number of existing object centroids we need to
 | 
			
		||||
            # register each new input centroid as a trackable object
 | 
			
		||||
            # if D.shape[0] < D.shape[1]:
 | 
			
		||||
            # TODO: rather than assuming these are new objects, we could
 | 
			
		||||
            # look to see if any of the remaining boxes have a large amount
 | 
			
		||||
            # of overlap...
 | 
			
		||||
            else:
 | 
			
		||||
                for col in unusedCols:
 | 
			
		||||
                    self.register(col, group[col])
 | 
			
		||||
 | 
			
		||||
# Maintains the frame and object with the highest score
 | 
			
		||||
class BestFrames(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.camera = camera
 | 
			
		||||
        self.best_objects = {}
 | 
			
		||||
        self.best_frames = {}
 | 
			
		||||
# class BestFrames(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
#         self.best_objects = {}
 | 
			
		||||
#         self.best_frames = {}
 | 
			
		||||
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            # wait until objects have been tracked
 | 
			
		||||
            with self.camera.objects_tracked:
 | 
			
		||||
                self.camera.objects_tracked.wait()
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             # wait until objects have been tracked
 | 
			
		||||
#             with self.camera.objects_tracked:
 | 
			
		||||
#                 self.camera.objects_tracked.wait()
 | 
			
		||||
 | 
			
		||||
            # make a copy of tracked objects
 | 
			
		||||
            tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
 | 
			
		||||
#             # make a copy of tracked objects
 | 
			
		||||
#             tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
 | 
			
		||||
 | 
			
		||||
            for obj in tracked_objects:
 | 
			
		||||
                if obj['name'] in self.best_objects:
 | 
			
		||||
                    now = datetime.datetime.now().timestamp()
 | 
			
		||||
                    # if the object is a higher score than the current best score 
 | 
			
		||||
                    # or the current object is more than 1 minute old, use the new object
 | 
			
		||||
                    if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
 | 
			
		||||
                        self.best_objects[obj['name']] = copy.deepcopy(obj)
 | 
			
		||||
                else:
 | 
			
		||||
                    self.best_objects[obj['name']] = copy.deepcopy(obj)
 | 
			
		||||
#             for obj in tracked_objects:
 | 
			
		||||
#                 if obj['name'] in self.best_objects:
 | 
			
		||||
#                     now = datetime.datetime.now().timestamp()
 | 
			
		||||
#                     # if the object is a higher score than the current best score 
 | 
			
		||||
#                     # or the current object is more than 1 minute old, use the new object
 | 
			
		||||
#                     if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
 | 
			
		||||
#                         self.best_objects[obj['name']] = copy.deepcopy(obj)
 | 
			
		||||
#                 else:
 | 
			
		||||
#                     self.best_objects[obj['name']] = copy.deepcopy(obj)
 | 
			
		||||
            
 | 
			
		||||
            for name, obj in self.best_objects.items():
 | 
			
		||||
                if obj['frame_time'] in self.camera.frame_cache:
 | 
			
		||||
                    best_frame = self.camera.frame_cache[obj['frame_time']]
 | 
			
		||||
#             for name, obj in self.best_objects.items():
 | 
			
		||||
#                 if obj['frame_time'] in self.camera.frame_cache:
 | 
			
		||||
#                     best_frame = self.camera.frame_cache[obj['frame_time']]
 | 
			
		||||
 | 
			
		||||
                    draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'], 
 | 
			
		||||
                        obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
 | 
			
		||||
#                     draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'], 
 | 
			
		||||
#                         obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
 | 
			
		||||
                    
 | 
			
		||||
                    # print a timestamp
 | 
			
		||||
                    if self.camera.snapshot_config['show_timestamp']:
 | 
			
		||||
                        time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
                        cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
#                     # print a timestamp
 | 
			
		||||
#                     if self.camera.snapshot_config['show_timestamp']:
 | 
			
		||||
#                         time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
#                         cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
                    
 | 
			
		||||
                    self.best_frames[name] = best_frame
 | 
			
		||||
#                     self.best_frames[name] = best_frame
 | 
			
		||||
							
								
								
									
										160
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										160
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							@ -15,73 +15,11 @@ def ReadLabelFile(file_path):
 | 
			
		||||
        ret[int(pair[0])] = pair[1].strip()
 | 
			
		||||
    return ret
 | 
			
		||||
 | 
			
		||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):    
 | 
			
		||||
    # size is larger than longest edge
 | 
			
		||||
    size = int(max(xmax-xmin, ymax-ymin)*2)
 | 
			
		||||
    # if the size is too big to fit in the frame
 | 
			
		||||
    if size > min(frame_shape[0], frame_shape[1]):
 | 
			
		||||
        size = min(frame_shape[0], frame_shape[1])
 | 
			
		||||
 | 
			
		||||
    # x_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if x_offset < 0:
 | 
			
		||||
        x_offset = 0
 | 
			
		||||
    elif x_offset > (frame_shape[1]-size):
 | 
			
		||||
        x_offset = (frame_shape[1]-size)
 | 
			
		||||
 | 
			
		||||
    # y_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if y_offset < 0:
 | 
			
		||||
        y_offset = 0
 | 
			
		||||
    elif y_offset > (frame_shape[0]-size):
 | 
			
		||||
        y_offset = (frame_shape[0]-size)
 | 
			
		||||
 | 
			
		||||
    return (size, x_offset, y_offset)
 | 
			
		||||
 | 
			
		||||
def compute_intersection_rectangle(box_a, box_b):
 | 
			
		||||
    return {
 | 
			
		||||
        'xmin': max(box_a['xmin'], box_b['xmin']),
 | 
			
		||||
        'ymin': max(box_a['ymin'], box_b['ymin']),
 | 
			
		||||
        'xmax': min(box_a['xmax'], box_b['xmax']),
 | 
			
		||||
        'ymax': min(box_a['ymax'], box_b['ymax'])
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
def compute_intersection_over_union(box_a, box_b):
 | 
			
		||||
    # determine the (x, y)-coordinates of the intersection rectangle
 | 
			
		||||
    intersect = compute_intersection_rectangle(box_a, box_b)
 | 
			
		||||
 | 
			
		||||
    # compute the area of intersection rectangle
 | 
			
		||||
    inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
 | 
			
		||||
 | 
			
		||||
    if inter_area == 0:
 | 
			
		||||
        return 0.0
 | 
			
		||||
    
 | 
			
		||||
    # compute the area of both the prediction and ground-truth
 | 
			
		||||
    # rectangles
 | 
			
		||||
    box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
 | 
			
		||||
    box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
 | 
			
		||||
 | 
			
		||||
    # compute the intersection over union by taking the intersection
 | 
			
		||||
    # area and dividing it by the sum of prediction + ground-truth
 | 
			
		||||
    # areas - the interesection area
 | 
			
		||||
    iou = inter_area / float(box_a_area + box_b_area - inter_area)
 | 
			
		||||
 | 
			
		||||
    # return the intersection over union value
 | 
			
		||||
    return iou
 | 
			
		||||
 | 
			
		||||
# convert shared memory array into numpy array
 | 
			
		||||
def tonumpyarray(mp_arr):
 | 
			
		||||
    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
 | 
			
		||||
    if color is None:
 | 
			
		||||
        color = COLOR_MAP[label]
 | 
			
		||||
        color = (0,0,255)
 | 
			
		||||
    display_text = "{}: {}".format(label, info)
 | 
			
		||||
    cv2.rectangle(frame, (x_min, y_min), 
 | 
			
		||||
        (x_max, y_max), 
 | 
			
		||||
        color, thickness)
 | 
			
		||||
    cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
 | 
			
		||||
    font_scale = 0.5
 | 
			
		||||
    font = cv2.FONT_HERSHEY_SIMPLEX
 | 
			
		||||
    # get the width and height of the text box
 | 
			
		||||
@ -107,37 +45,81 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
 | 
			
		||||
    cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
 | 
			
		||||
    cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
 | 
			
		||||
 | 
			
		||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
 | 
			
		||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
 | 
			
		||||
# List of the strings that is used to add correct label for each box.
 | 
			
		||||
PATH_TO_LABELS = '/label_map.pbtext'
 | 
			
		||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):    
 | 
			
		||||
    # size is larger than longest edge
 | 
			
		||||
    size = int(max(xmax-xmin, ymax-ymin)*multiplier)
 | 
			
		||||
    # if the size is too big to fit in the frame
 | 
			
		||||
    if size > min(frame_shape[0], frame_shape[1]):
 | 
			
		||||
        size = min(frame_shape[0], frame_shape[1])
 | 
			
		||||
 | 
			
		||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
 | 
			
		||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
 | 
			
		||||
    # x_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if x_offset < 0:
 | 
			
		||||
        x_offset = 0
 | 
			
		||||
    elif x_offset > (frame_shape[1]-size):
 | 
			
		||||
        x_offset = (frame_shape[1]-size)
 | 
			
		||||
 | 
			
		||||
COLOR_MAP = {}
 | 
			
		||||
for key, val in LABELS.items():
 | 
			
		||||
    COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
 | 
			
		||||
    # y_offset is midpoint of bounding box minus half the size
 | 
			
		||||
    y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
 | 
			
		||||
    # if outside the image
 | 
			
		||||
    if y_offset < 0:
 | 
			
		||||
        y_offset = 0
 | 
			
		||||
    elif y_offset > (frame_shape[0]-size):
 | 
			
		||||
        y_offset = (frame_shape[0]-size)
 | 
			
		||||
 | 
			
		||||
class QueueMerger():
 | 
			
		||||
    def __init__(self, from_queues, to_queue):
 | 
			
		||||
        self.from_queues = from_queues
 | 
			
		||||
        self.to_queue = to_queue
 | 
			
		||||
        self.merge_threads = []
 | 
			
		||||
    return (x_offset, y_offset, x_offset+size, y_offset+size)
 | 
			
		||||
 | 
			
		||||
    def start(self):
 | 
			
		||||
        for from_q in self.from_queues:
 | 
			
		||||
            self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
 | 
			
		||||
def intersection(box_a, box_b):
 | 
			
		||||
    return (
 | 
			
		||||
        max(box_a[0], box_b[0]),
 | 
			
		||||
        max(box_a[1], box_b[1]),
 | 
			
		||||
        min(box_a[2], box_b[2]),
 | 
			
		||||
        min(box_a[3], box_b[3])
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
class QueueTransfer(threading.Thread):
 | 
			
		||||
    def __init__(self, from_queue, to_queue):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.from_queue = from_queue
 | 
			
		||||
        self.to_queue = to_queue
 | 
			
		||||
def area(box):
 | 
			
		||||
    return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
 | 
			
		||||
    
 | 
			
		||||
    def run(self):
 | 
			
		||||
        while True:
 | 
			
		||||
            self.to_queue.put(self.from_queue.get())
 | 
			
		||||
def intersection_over_union(box_a, box_b):
 | 
			
		||||
    # determine the (x, y)-coordinates of the intersection rectangle
 | 
			
		||||
    intersect = intersection(box_a, box_b)
 | 
			
		||||
 | 
			
		||||
    # compute the area of intersection rectangle
 | 
			
		||||
    inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
 | 
			
		||||
 | 
			
		||||
    if inter_area == 0:
 | 
			
		||||
        return 0.0
 | 
			
		||||
    
 | 
			
		||||
    # compute the area of both the prediction and ground-truth
 | 
			
		||||
    # rectangles
 | 
			
		||||
    box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
 | 
			
		||||
    box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
 | 
			
		||||
 | 
			
		||||
    # compute the intersection over union by taking the intersection
 | 
			
		||||
    # area and dividing it by the sum of prediction + ground-truth
 | 
			
		||||
    # areas - the interesection area
 | 
			
		||||
    iou = inter_area / float(box_a_area + box_b_area - inter_area)
 | 
			
		||||
 | 
			
		||||
    # return the intersection over union value
 | 
			
		||||
    return iou
 | 
			
		||||
 | 
			
		||||
def clipped(obj, frame_shape):
 | 
			
		||||
    # if the object is within 5 pixels of the region border, and the region is not on the edge
 | 
			
		||||
    # consider the object to be clipped
 | 
			
		||||
    box = obj[2]
 | 
			
		||||
    region = obj[4]
 | 
			
		||||
    if ((region[0] > 5 and box[0]-region[0] <= 5) or 
 | 
			
		||||
        (region[1] > 5 and box[1]-region[1] <= 5) or
 | 
			
		||||
        (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
 | 
			
		||||
        (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
 | 
			
		||||
        return True
 | 
			
		||||
    else:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
# convert shared memory array into numpy array
 | 
			
		||||
def tonumpyarray(mp_arr):
 | 
			
		||||
    return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
class EventsPerSecond:
 | 
			
		||||
    def __init__(self, max_events=1000):
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										748
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										748
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							@ -8,40 +8,47 @@ import ctypes
 | 
			
		||||
import multiprocessing as mp
 | 
			
		||||
import subprocess as sp
 | 
			
		||||
import numpy as np
 | 
			
		||||
import prctl
 | 
			
		||||
import hashlib
 | 
			
		||||
import pyarrow.plasma as plasma
 | 
			
		||||
import SharedArray as sa
 | 
			
		||||
# import prctl
 | 
			
		||||
import copy
 | 
			
		||||
import itertools
 | 
			
		||||
import json
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
 | 
			
		||||
from frigate.object_detection import RegionPrepper, RegionRequester
 | 
			
		||||
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
 | 
			
		||||
from frigate.mqtt import MqttObjectPublisher
 | 
			
		||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
 | 
			
		||||
# from frigate.object_detection import RegionPrepper, RegionRequester
 | 
			
		||||
from frigate.objects import ObjectTracker
 | 
			
		||||
# from frigate.mqtt import MqttObjectPublisher
 | 
			
		||||
from frigate.edgetpu import RemoteObjectDetector
 | 
			
		||||
from frigate.motion import MotionDetector
 | 
			
		||||
 | 
			
		||||
# Stores 2 seconds worth of frames so they can be used for other threads
 | 
			
		||||
class FrameTracker(threading.Thread):
 | 
			
		||||
    def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
        self.frame_time = frame_time
 | 
			
		||||
        self.frame_ready = frame_ready
 | 
			
		||||
        self.frame_lock = frame_lock
 | 
			
		||||
        self.recent_frames = recent_frames
 | 
			
		||||
# TODO: we do actually know when these frames are no longer needed
 | 
			
		||||
# class FrameTracker(threading.Thread):
 | 
			
		||||
#     def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.frame_time = frame_time
 | 
			
		||||
#         self.frame_ready = frame_ready
 | 
			
		||||
#         self.frame_lock = frame_lock
 | 
			
		||||
#         self.recent_frames = recent_frames
 | 
			
		||||
    
 | 
			
		||||
    def run(self):
 | 
			
		||||
        prctl.set_name(self.__class__.__name__)
 | 
			
		||||
        while True:
 | 
			
		||||
            # wait for a frame
 | 
			
		||||
            with self.frame_ready:
 | 
			
		||||
                self.frame_ready.wait()
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             # wait for a frame
 | 
			
		||||
#             with self.frame_ready:
 | 
			
		||||
#                 self.frame_ready.wait()
 | 
			
		||||
 | 
			
		||||
            # delete any old frames
 | 
			
		||||
            stored_frame_times = list(self.recent_frames.keys())
 | 
			
		||||
            stored_frame_times.sort(reverse=True)
 | 
			
		||||
            if len(stored_frame_times) > 100:
 | 
			
		||||
                frames_to_delete = stored_frame_times[50:]
 | 
			
		||||
                for k in frames_to_delete:
 | 
			
		||||
                    del self.recent_frames[k]
 | 
			
		||||
#             # delete any old frames
 | 
			
		||||
#             stored_frame_times = list(self.recent_frames.keys())
 | 
			
		||||
#             stored_frame_times.sort(reverse=True)
 | 
			
		||||
#             if len(stored_frame_times) > 100:
 | 
			
		||||
#                 frames_to_delete = stored_frame_times[50:]
 | 
			
		||||
#                 for k in frames_to_delete:
 | 
			
		||||
#                     del self.recent_frames[k]
 | 
			
		||||
 | 
			
		||||
# TODO: add back opencv fallback
 | 
			
		||||
def get_frame_shape(source):
 | 
			
		||||
    ffprobe_cmd = " ".join([
 | 
			
		||||
        'ffprobe',
 | 
			
		||||
@ -76,6 +83,7 @@ def get_ffmpeg_input(ffmpeg_input):
 | 
			
		||||
    frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
 | 
			
		||||
    return ffmpeg_input.format(**frigate_vars)
 | 
			
		||||
 | 
			
		||||
<<<<<<< HEAD
 | 
			
		||||
class CameraWatchdog(threading.Thread):
 | 
			
		||||
    def __init__(self, camera):
 | 
			
		||||
        threading.Thread.__init__(self)
 | 
			
		||||
@ -294,112 +302,648 @@ class Camera:
 | 
			
		||||
            self.capture_thread.join()
 | 
			
		||||
            self.ffmpeg_process = None
 | 
			
		||||
            self.capture_thread = None
 | 
			
		||||
=======
 | 
			
		||||
# class CameraWatchdog(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
        # create the process to capture frames from the input stream and store in a shared array
 | 
			
		||||
        print("Creating a new ffmpeg process...")
 | 
			
		||||
        self.start_ffmpeg()
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             # wait a bit before checking
 | 
			
		||||
#             time.sleep(10)
 | 
			
		||||
 | 
			
		||||
        print("Creating a new capture thread...")
 | 
			
		||||
        self.capture_thread = CameraCapture(self)
 | 
			
		||||
        print("Starting a new capture thread...")
 | 
			
		||||
        self.capture_thread.start()
 | 
			
		||||
        self.fps.start()
 | 
			
		||||
        self.skipped_region_tracker.start()
 | 
			
		||||
#             if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
 | 
			
		||||
#                 print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
 | 
			
		||||
#                 self.camera.start_or_restart_capture()
 | 
			
		||||
#                 time.sleep(5)
 | 
			
		||||
 | 
			
		||||
# # Thread to read the stdout of the ffmpeg process and update the current frame
 | 
			
		||||
# class CameraCapture(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         frame_num = 0
 | 
			
		||||
#         while True:
 | 
			
		||||
#             if self.camera.ffmpeg_process.poll() != None:
 | 
			
		||||
#                 print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
 | 
			
		||||
#                 break
 | 
			
		||||
 | 
			
		||||
#             raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
 | 
			
		||||
 | 
			
		||||
#             if len(raw_image) == 0:
 | 
			
		||||
#                 print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
 | 
			
		||||
#                 break
 | 
			
		||||
 | 
			
		||||
#             frame_num += 1
 | 
			
		||||
#             if (frame_num % self.camera.take_frame) != 0:
 | 
			
		||||
#                 continue
 | 
			
		||||
 | 
			
		||||
#             with self.camera.frame_lock:
 | 
			
		||||
#                 # TODO: use frame_queue instead
 | 
			
		||||
#                 self.camera.frame_time.value = datetime.datetime.now().timestamp()
 | 
			
		||||
#                 self.camera.frame_cache[self.camera.frame_time.value] = (
 | 
			
		||||
#                     np
 | 
			
		||||
#                     .frombuffer(raw_image, np.uint8)
 | 
			
		||||
#                     .reshape(self.camera.frame_shape)
 | 
			
		||||
#                 )
 | 
			
		||||
#                 self.camera.frame_queue.put(self.camera.frame_time.value)
 | 
			
		||||
#             # Notify with the condition that a new frame is ready
 | 
			
		||||
#             with self.camera.frame_ready:
 | 
			
		||||
#                 self.camera.frame_ready.notify_all()
 | 
			
		||||
 | 
			
		||||
#             self.camera.fps.update()
 | 
			
		||||
 | 
			
		||||
# class VideoWriter(threading.Thread):
 | 
			
		||||
#     def __init__(self, camera):
 | 
			
		||||
#         threading.Thread.__init__(self)
 | 
			
		||||
#         self.camera = camera
 | 
			
		||||
 | 
			
		||||
#     def run(self):
 | 
			
		||||
#         prctl.set_name(self.__class__.__name__)
 | 
			
		||||
#         while True:
 | 
			
		||||
#             (frame_time, tracked_objects) = self.camera.frame_output_queue.get()
 | 
			
		||||
#             # if len(tracked_objects) == 0:
 | 
			
		||||
#             #     continue
 | 
			
		||||
#             # f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
 | 
			
		||||
#             # f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
 | 
			
		||||
#             # f.close()
 | 
			
		||||
 | 
			
		||||
# class Camera:
 | 
			
		||||
#     def __init__(self, name, ffmpeg_config, global_objects_config, config, tflite_process, mqtt_client, mqtt_prefix):
 | 
			
		||||
#         self.name = name
 | 
			
		||||
#         self.config = config
 | 
			
		||||
#         self.detected_objects = defaultdict(lambda: [])
 | 
			
		||||
#         self.frame_cache = {}
 | 
			
		||||
#         self.last_processed_frame = None
 | 
			
		||||
#         # queue for re-assembling frames in order
 | 
			
		||||
#         self.frame_queue = queue.Queue()
 | 
			
		||||
#         # track how many regions have been requested for a frame so we know when a frame is complete
 | 
			
		||||
#         self.regions_in_process = {}
 | 
			
		||||
#         # Lock to control access
 | 
			
		||||
#         self.regions_in_process_lock = mp.Lock()
 | 
			
		||||
#         self.finished_frame_queue = queue.Queue()
 | 
			
		||||
#         self.refined_frame_queue = queue.Queue()
 | 
			
		||||
#         self.frame_output_queue = queue.Queue()
 | 
			
		||||
 | 
			
		||||
#         self.ffmpeg = config.get('ffmpeg', {})
 | 
			
		||||
#         self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
 | 
			
		||||
#         self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
 | 
			
		||||
#         self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
 | 
			
		||||
#         self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
 | 
			
		||||
#         self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
 | 
			
		||||
 | 
			
		||||
#         camera_objects_config = config.get('objects', {})
 | 
			
		||||
 | 
			
		||||
#         self.take_frame = self.config.get('take_frame', 1)
 | 
			
		||||
#         self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
 | 
			
		||||
#         self.snapshot_config = {
 | 
			
		||||
#             'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
 | 
			
		||||
#         }
 | 
			
		||||
#         self.regions = self.config['regions']
 | 
			
		||||
#         self.frame_shape = get_frame_shape(self.ffmpeg_input)
 | 
			
		||||
#         self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
 | 
			
		||||
#         self.mqtt_client = mqtt_client
 | 
			
		||||
#         self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
 | 
			
		||||
 | 
			
		||||
#         # create shared value for storing the frame_time
 | 
			
		||||
#         self.frame_time = mp.Value('d', 0.0)
 | 
			
		||||
#         # Lock to control access to the frame
 | 
			
		||||
#         self.frame_lock = mp.Lock()
 | 
			
		||||
#         # Condition for notifying that a new frame is ready
 | 
			
		||||
#         self.frame_ready = mp.Condition()
 | 
			
		||||
#         # Condition for notifying that objects were tracked
 | 
			
		||||
#         self.objects_tracked = mp.Condition()
 | 
			
		||||
 | 
			
		||||
#         # Queue for prepped frames, max size set to (number of regions * 5)
 | 
			
		||||
#         self.resize_queue = queue.Queue()
 | 
			
		||||
 | 
			
		||||
#         # Queue for raw detected objects
 | 
			
		||||
#         self.detected_objects_queue = queue.Queue()
 | 
			
		||||
#         self.detected_objects_processor = DetectedObjectsProcessor(self)
 | 
			
		||||
#         self.detected_objects_processor.start()
 | 
			
		||||
 | 
			
		||||
#         # initialize the frame cache
 | 
			
		||||
#         self.cached_frame_with_objects = {
 | 
			
		||||
#             'frame_bytes': [],
 | 
			
		||||
#             'frame_time': 0
 | 
			
		||||
#         }
 | 
			
		||||
 | 
			
		||||
#         self.ffmpeg_process = None
 | 
			
		||||
#         self.capture_thread = None
 | 
			
		||||
#         self.fps = EventsPerSecond()
 | 
			
		||||
#         self.skipped_region_tracker = EventsPerSecond()
 | 
			
		||||
 | 
			
		||||
#         # combine tracked objects lists
 | 
			
		||||
#         self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
 | 
			
		||||
 | 
			
		||||
#         # merge object filters
 | 
			
		||||
#         global_object_filters = global_objects_config.get('filters', {})
 | 
			
		||||
#         camera_object_filters = camera_objects_config.get('filters', {})
 | 
			
		||||
#         objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
 | 
			
		||||
#         self.object_filters = {}
 | 
			
		||||
#         for obj in objects_with_config:
 | 
			
		||||
#             self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
 | 
			
		||||
 | 
			
		||||
#         # start a thread to track objects
 | 
			
		||||
#         self.object_tracker = ObjectTracker(self, 10)
 | 
			
		||||
#         self.object_tracker.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to write tracked frames to disk
 | 
			
		||||
#         self.video_writer = VideoWriter(self)
 | 
			
		||||
#         self.video_writer.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to queue resize requests for regions
 | 
			
		||||
#         self.region_requester = RegionRequester(self)
 | 
			
		||||
#         self.region_requester.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to cache recent frames for processing
 | 
			
		||||
#         self.frame_tracker = FrameTracker(self.frame_time, 
 | 
			
		||||
#             self.frame_ready, self.frame_lock, self.frame_cache)
 | 
			
		||||
#         self.frame_tracker.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to resize regions
 | 
			
		||||
#         self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
 | 
			
		||||
#         self.region_prepper.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to store the highest scoring recent frames for monitored object types
 | 
			
		||||
#         self.best_frames = BestFrames(self)
 | 
			
		||||
#         self.best_frames.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to expire objects from the detected objects list
 | 
			
		||||
#         self.object_cleaner = ObjectCleaner(self)
 | 
			
		||||
#         self.object_cleaner.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to refine regions when objects are clipped
 | 
			
		||||
#         self.dynamic_region_fps = EventsPerSecond()
 | 
			
		||||
#         self.region_refiner = RegionRefiner(self)
 | 
			
		||||
#         self.region_refiner.start()
 | 
			
		||||
#         self.dynamic_region_fps.start()
 | 
			
		||||
 | 
			
		||||
#         # start a thread to publish object scores
 | 
			
		||||
#         mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
 | 
			
		||||
#         mqtt_publisher.start()
 | 
			
		||||
 | 
			
		||||
#         # create a watchdog thread for capture process
 | 
			
		||||
#         self.watchdog = CameraWatchdog(self)
 | 
			
		||||
 | 
			
		||||
#         # load in the mask for object detection
 | 
			
		||||
#         if 'mask' in self.config:
 | 
			
		||||
#             self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
 | 
			
		||||
#         else:
 | 
			
		||||
#             self.mask = None
 | 
			
		||||
 | 
			
		||||
#         if self.mask is None:
 | 
			
		||||
#             self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
 | 
			
		||||
#             self.mask[:] = 255
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#     def start_or_restart_capture(self):
 | 
			
		||||
#         if not self.ffmpeg_process is None:
 | 
			
		||||
#             print("Terminating the existing ffmpeg process...")
 | 
			
		||||
#             self.ffmpeg_process.terminate()
 | 
			
		||||
#             try:
 | 
			
		||||
#                 print("Waiting for ffmpeg to exit gracefully...")
 | 
			
		||||
#                 self.ffmpeg_process.wait(timeout=30)
 | 
			
		||||
#             except sp.TimeoutExpired:
 | 
			
		||||
#                 print("FFmpeg didnt exit. Force killing...")
 | 
			
		||||
#                 self.ffmpeg_process.kill()
 | 
			
		||||
#                 self.ffmpeg_process.wait()
 | 
			
		||||
 | 
			
		||||
#             print("Waiting for the capture thread to exit...")
 | 
			
		||||
#             self.capture_thread.join()
 | 
			
		||||
#             self.ffmpeg_process = None
 | 
			
		||||
#             self.capture_thread = None
 | 
			
		||||
>>>>>>> 9b1c7e9... split into separate processes
 | 
			
		||||
            
 | 
			
		||||
#         # create the process to capture frames from the input stream and store in a shared array
 | 
			
		||||
#         print("Creating a new ffmpeg process...")
 | 
			
		||||
#         self.start_ffmpeg()
 | 
			
		||||
        
 | 
			
		||||
#         print("Creating a new capture thread...")
 | 
			
		||||
#         self.capture_thread = CameraCapture(self)
 | 
			
		||||
#         print("Starting a new capture thread...")
 | 
			
		||||
#         self.capture_thread.start()
 | 
			
		||||
#         self.fps.start()
 | 
			
		||||
#         self.skipped_region_tracker.start()
 | 
			
		||||
    
 | 
			
		||||
#     def start_ffmpeg(self):
 | 
			
		||||
#         ffmpeg_cmd = (['ffmpeg'] +
 | 
			
		||||
#             self.ffmpeg_global_args +
 | 
			
		||||
#             self.ffmpeg_hwaccel_args +
 | 
			
		||||
#             self.ffmpeg_input_args +
 | 
			
		||||
#             ['-i', self.ffmpeg_input] +
 | 
			
		||||
#             self.ffmpeg_output_args +
 | 
			
		||||
#             ['pipe:'])
 | 
			
		||||
 | 
			
		||||
#         print(" ".join(ffmpeg_cmd))
 | 
			
		||||
        
 | 
			
		||||
#         self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
 | 
			
		||||
    
 | 
			
		||||
#     def start(self):
 | 
			
		||||
#         self.start_or_restart_capture()
 | 
			
		||||
#         self.watchdog.start()
 | 
			
		||||
    
 | 
			
		||||
#     def join(self):
 | 
			
		||||
#         self.capture_thread.join()
 | 
			
		||||
    
 | 
			
		||||
#     def get_capture_pid(self):
 | 
			
		||||
#         return self.ffmpeg_process.pid
 | 
			
		||||
    
 | 
			
		||||
#     def get_best(self, label):
 | 
			
		||||
#         return self.best_frames.best_frames.get(label)
 | 
			
		||||
 | 
			
		||||
#     def stats(self):
 | 
			
		||||
#         # TODO: anything else?
 | 
			
		||||
#         return {
 | 
			
		||||
#             'camera_fps': self.fps.eps(60),
 | 
			
		||||
#             'resize_queue': self.resize_queue.qsize(),
 | 
			
		||||
#             'frame_queue': self.frame_queue.qsize(),
 | 
			
		||||
#             'finished_frame_queue': self.finished_frame_queue.qsize(),
 | 
			
		||||
#             'refined_frame_queue': self.refined_frame_queue.qsize(),
 | 
			
		||||
#             'regions_in_process': self.regions_in_process,
 | 
			
		||||
#             'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
 | 
			
		||||
#             'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
 | 
			
		||||
#         }
 | 
			
		||||
    
 | 
			
		||||
#     def frame_with_objects(self, frame_time, tracked_objects=None):
 | 
			
		||||
#         if not frame_time in self.frame_cache:
 | 
			
		||||
#             frame = np.zeros(self.frame_shape, np.uint8)
 | 
			
		||||
#         else:
 | 
			
		||||
#             frame = self.frame_cache[frame_time].copy()
 | 
			
		||||
            
 | 
			
		||||
#         detected_objects = self.detected_objects[frame_time].copy()
 | 
			
		||||
 | 
			
		||||
#         for region in self.regions:
 | 
			
		||||
#             color = (255,255,255)
 | 
			
		||||
#             cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
 | 
			
		||||
#                 (region['x_offset']+region['size'], region['y_offset']+region['size']), 
 | 
			
		||||
#                 color, 2)
 | 
			
		||||
 | 
			
		||||
#         # draw the bounding boxes on the screen
 | 
			
		||||
 | 
			
		||||
#         if tracked_objects is None:
 | 
			
		||||
#             with self.object_tracker.tracked_objects_lock:
 | 
			
		||||
#                 tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
 | 
			
		||||
 | 
			
		||||
#         for obj in detected_objects:
 | 
			
		||||
#             draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
 | 
			
		||||
        
 | 
			
		||||
#         for id, obj in tracked_objects.items():
 | 
			
		||||
#             color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
 | 
			
		||||
#             draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
 | 
			
		||||
 | 
			
		||||
#         # print a timestamp
 | 
			
		||||
#         time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
#         cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
        
 | 
			
		||||
#         # print fps
 | 
			
		||||
#         cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
 | 
			
		||||
#         # convert to BGR
 | 
			
		||||
#         frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
 | 
			
		||||
#         # encode the image into a jpg
 | 
			
		||||
#         ret, jpg = cv2.imencode('.jpg', frame)
 | 
			
		||||
 | 
			
		||||
#         return jpg.tobytes()
 | 
			
		||||
 | 
			
		||||
#     def get_current_frame_with_objects(self):
 | 
			
		||||
#         frame_time = self.last_processed_frame
 | 
			
		||||
#         if frame_time == self.cached_frame_with_objects['frame_time']:
 | 
			
		||||
#             return self.cached_frame_with_objects['frame_bytes']
 | 
			
		||||
 | 
			
		||||
#         frame_bytes = self.frame_with_objects(frame_time)
 | 
			
		||||
 | 
			
		||||
#         self.cached_frame_with_objects = {
 | 
			
		||||
#             'frame_bytes': frame_bytes,
 | 
			
		||||
#             'frame_time': frame_time
 | 
			
		||||
#         }
 | 
			
		||||
 | 
			
		||||
#         return frame_bytes
 | 
			
		||||
 | 
			
		||||
def filtered(obj, objects_to_track, object_filters, mask):
 | 
			
		||||
    object_name = obj[0]
 | 
			
		||||
 | 
			
		||||
    if not object_name in objects_to_track:
 | 
			
		||||
        return True
 | 
			
		||||
    
 | 
			
		||||
    if object_name in object_filters:
 | 
			
		||||
        obj_settings = object_filters[object_name]
 | 
			
		||||
 | 
			
		||||
        # if the min area is larger than the
 | 
			
		||||
        # detected object, don't add it to detected objects
 | 
			
		||||
        if obj_settings.get('min_area',-1) > obj[3]:
 | 
			
		||||
            return True
 | 
			
		||||
        
 | 
			
		||||
        # if the detected object is larger than the
 | 
			
		||||
        # max area, don't add it to detected objects
 | 
			
		||||
        if obj_settings.get('max_area', 24000000) < obj[3]:
 | 
			
		||||
            return True
 | 
			
		||||
 | 
			
		||||
        # if the score is lower than the threshold, skip
 | 
			
		||||
        if obj_settings.get('threshold', 0) > obj[1]:
 | 
			
		||||
            return True
 | 
			
		||||
    
 | 
			
		||||
        # compute the coordinates of the object and make sure
 | 
			
		||||
        # the location isnt outside the bounds of the image (can happen from rounding)
 | 
			
		||||
        y_location = min(int(obj[2][3]), len(mask)-1)
 | 
			
		||||
        x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
 | 
			
		||||
 | 
			
		||||
        # if the object is in a masked location, don't add it to detected objects
 | 
			
		||||
        if mask[y_location][x_location] == [0]:
 | 
			
		||||
            return True
 | 
			
		||||
        
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
def create_tensor_input(frame, region):
 | 
			
		||||
    cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
 | 
			
		||||
 | 
			
		||||
    # Resize to 300x300 if needed
 | 
			
		||||
    if cropped_frame.shape != (300, 300, 3):
 | 
			
		||||
        cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
 | 
			
		||||
    
 | 
			
		||||
    # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
 | 
			
		||||
    return np.expand_dims(cropped_frame, axis=0)
 | 
			
		||||
 | 
			
		||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, avg_wait):
 | 
			
		||||
    print(f"Starting process for {name}: {os.getpid()}")
 | 
			
		||||
 | 
			
		||||
    # Merge the ffmpeg config with the global config
 | 
			
		||||
    ffmpeg = config.get('ffmpeg', {})
 | 
			
		||||
    ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
 | 
			
		||||
    ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
 | 
			
		||||
    ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
 | 
			
		||||
    ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
 | 
			
		||||
    ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
 | 
			
		||||
 | 
			
		||||
    # Merge the tracked object config with the global config
 | 
			
		||||
    camera_objects_config = config.get('objects', {})    
 | 
			
		||||
    # combine tracked objects lists
 | 
			
		||||
    objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
 | 
			
		||||
    # merge object filters
 | 
			
		||||
    global_object_filters = global_objects_config.get('filters', {})
 | 
			
		||||
    camera_object_filters = camera_objects_config.get('filters', {})
 | 
			
		||||
    objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
 | 
			
		||||
    object_filters = {}
 | 
			
		||||
    for obj in objects_with_config:
 | 
			
		||||
        object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
 | 
			
		||||
 | 
			
		||||
    take_frame = config.get('take_frame', 1)
 | 
			
		||||
 | 
			
		||||
    # watchdog_timeout = config.get('watchdog_timeout', 300)
 | 
			
		||||
 | 
			
		||||
    frame_shape = get_frame_shape(ffmpeg_input)
 | 
			
		||||
    frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        sa.delete(name)
 | 
			
		||||
    except:
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
    # load in the mask for object detection
 | 
			
		||||
    if 'mask' in config:
 | 
			
		||||
        mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
 | 
			
		||||
    else:
 | 
			
		||||
        mask = None
 | 
			
		||||
 | 
			
		||||
    if mask is None:
 | 
			
		||||
        mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
 | 
			
		||||
        mask[:] = 255
 | 
			
		||||
 | 
			
		||||
    motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
 | 
			
		||||
    object_detector = RemoteObjectDetector('/lab/labelmap.txt', detect_lock, detect_ready, frame_ready)
 | 
			
		||||
 | 
			
		||||
    object_tracker = ObjectTracker(10)
 | 
			
		||||
 | 
			
		||||
    def start_ffmpeg(self):
 | 
			
		||||
    ffmpeg_cmd = (['ffmpeg'] +
 | 
			
		||||
            self.ffmpeg_global_args +
 | 
			
		||||
            self.ffmpeg_hwaccel_args +
 | 
			
		||||
            self.ffmpeg_input_args +
 | 
			
		||||
            ['-i', self.ffmpeg_input] +
 | 
			
		||||
            self.ffmpeg_output_args +
 | 
			
		||||
            ffmpeg_global_args +
 | 
			
		||||
            ffmpeg_hwaccel_args +
 | 
			
		||||
            ffmpeg_input_args +
 | 
			
		||||
            ['-i', ffmpeg_input] +
 | 
			
		||||
            ffmpeg_output_args +
 | 
			
		||||
            ['pipe:'])
 | 
			
		||||
 | 
			
		||||
    print(" ".join(ffmpeg_cmd))
 | 
			
		||||
    
 | 
			
		||||
        self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
 | 
			
		||||
    ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
 | 
			
		||||
    
 | 
			
		||||
    def start(self):
 | 
			
		||||
        self.start_or_restart_capture()
 | 
			
		||||
        self.watchdog.start()
 | 
			
		||||
    plasma_client = plasma.connect("/tmp/plasma")
 | 
			
		||||
    frame_num = 0
 | 
			
		||||
    fps_tracker = EventsPerSecond()
 | 
			
		||||
    fps_tracker.start()
 | 
			
		||||
    while True:
 | 
			
		||||
        # TODO: implement something to determine if it had to wait for a frame at all
 | 
			
		||||
        # to determine if it might be behind and the buffer is filling up
 | 
			
		||||
        start = datetime.datetime.now().timestamp()
 | 
			
		||||
        frame_bytes = ffmpeg_process.stdout.read(frame_size)
 | 
			
		||||
        duration = datetime.datetime.now().timestamp()-start
 | 
			
		||||
        avg_wait.value = (avg_wait.value*9 + duration)/10
 | 
			
		||||
 | 
			
		||||
    def join(self):
 | 
			
		||||
        self.capture_thread.join()
 | 
			
		||||
        if not frame_bytes:
 | 
			
		||||
            # TODO: restart the ffmpeg process and track number of restarts
 | 
			
		||||
            break
 | 
			
		||||
 | 
			
		||||
    def get_capture_pid(self):
 | 
			
		||||
        return self.ffmpeg_process.pid
 | 
			
		||||
        # limit frame rate
 | 
			
		||||
        frame_num += 1
 | 
			
		||||
        if (frame_num % take_frame) != 0:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
    def get_best(self, label):
 | 
			
		||||
        return self.best_frames.best_frames.get(label)
 | 
			
		||||
        fps_tracker.update()
 | 
			
		||||
        fps.value = fps_tracker.eps()
 | 
			
		||||
 | 
			
		||||
    def stats(self):
 | 
			
		||||
        return {
 | 
			
		||||
            'camera_fps': self.fps.eps(60),
 | 
			
		||||
            'resize_queue': self.resize_queue.qsize(),
 | 
			
		||||
            'frame_queue': self.frame_queue.qsize(),
 | 
			
		||||
            'finished_frame_queue': self.finished_frame_queue.qsize(),
 | 
			
		||||
            'refined_frame_queue': self.refined_frame_queue.qsize(),
 | 
			
		||||
            'regions_in_process': self.regions_in_process,
 | 
			
		||||
            'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
 | 
			
		||||
            'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
 | 
			
		||||
        }
 | 
			
		||||
        frame_time = datetime.datetime.now().timestamp()
 | 
			
		||||
        
 | 
			
		||||
    def frame_with_objects(self, frame_time, tracked_objects=None):
 | 
			
		||||
        if not frame_time in self.frame_cache:
 | 
			
		||||
            frame = np.zeros(self.frame_shape, np.uint8)
 | 
			
		||||
        # Store frame in numpy array
 | 
			
		||||
        frame[:] = (np
 | 
			
		||||
                    .frombuffer(frame_bytes, np.uint8)
 | 
			
		||||
                    .reshape(frame_shape))
 | 
			
		||||
        
 | 
			
		||||
        # look for motion
 | 
			
		||||
        motion_boxes = motion_detector.detect(frame)
 | 
			
		||||
 | 
			
		||||
        tracked_objects = object_tracker.tracked_objects.values()
 | 
			
		||||
 | 
			
		||||
        # merge areas of motion that intersect with a known tracked object into a single area to look at
 | 
			
		||||
        areas_of_interest = []
 | 
			
		||||
        used_motion_boxes = []
 | 
			
		||||
        for obj in tracked_objects:
 | 
			
		||||
            x_min, y_min, x_max, y_max = obj['box']
 | 
			
		||||
            for m_index, motion_box in enumerate(motion_boxes):
 | 
			
		||||
                if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
 | 
			
		||||
                    used_motion_boxes.append(m_index)
 | 
			
		||||
                    x_min = min(obj['box'][0], motion_box[0])
 | 
			
		||||
                    y_min = min(obj['box'][1], motion_box[1])
 | 
			
		||||
                    x_max = max(obj['box'][2], motion_box[2])
 | 
			
		||||
                    y_max = max(obj['box'][3], motion_box[3])
 | 
			
		||||
            areas_of_interest.append((x_min, y_min, x_max, y_max))
 | 
			
		||||
        unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
 | 
			
		||||
        
 | 
			
		||||
        # compute motion regions
 | 
			
		||||
        motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
 | 
			
		||||
            for i in unused_motion_boxes]
 | 
			
		||||
        
 | 
			
		||||
        # compute tracked object regions
 | 
			
		||||
        object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
 | 
			
		||||
            for a in areas_of_interest]
 | 
			
		||||
        
 | 
			
		||||
        # merge regions with high IOU
 | 
			
		||||
        merged_regions = motion_regions+object_regions
 | 
			
		||||
        while True:
 | 
			
		||||
            max_iou = 0.0
 | 
			
		||||
            max_indices = None
 | 
			
		||||
            region_indices = range(len(merged_regions))
 | 
			
		||||
            for a, b in itertools.combinations(region_indices, 2):
 | 
			
		||||
                iou = intersection_over_union(merged_regions[a], merged_regions[b])
 | 
			
		||||
                if iou > max_iou:
 | 
			
		||||
                    max_iou = iou
 | 
			
		||||
                    max_indices = (a, b)
 | 
			
		||||
            if max_iou > 0.1:
 | 
			
		||||
                a = merged_regions[max_indices[0]]
 | 
			
		||||
                b = merged_regions[max_indices[1]]
 | 
			
		||||
                merged_regions.append(calculate_region(frame_shape,
 | 
			
		||||
                    min(a[0], b[0]),
 | 
			
		||||
                    min(a[1], b[1]),
 | 
			
		||||
                    max(a[2], b[2]),
 | 
			
		||||
                    max(a[3], b[3]),
 | 
			
		||||
                    1
 | 
			
		||||
                ))
 | 
			
		||||
                del merged_regions[max(max_indices[0], max_indices[1])]
 | 
			
		||||
                del merged_regions[min(max_indices[0], max_indices[1])]
 | 
			
		||||
            else:
 | 
			
		||||
            frame = self.frame_cache[frame_time].copy()
 | 
			
		||||
                break
 | 
			
		||||
 | 
			
		||||
        detected_objects = self.detected_objects[frame_time].copy()
 | 
			
		||||
        # resize regions and detect
 | 
			
		||||
        detections = []
 | 
			
		||||
        for region in merged_regions:
 | 
			
		||||
 | 
			
		||||
        for region in self.regions:
 | 
			
		||||
            color = (255,255,255)
 | 
			
		||||
            cv2.rectangle(frame, (region['x_offset'], region['y_offset']), 
 | 
			
		||||
                (region['x_offset']+region['size'], region['y_offset']+region['size']), 
 | 
			
		||||
                color, 2)
 | 
			
		||||
            tensor_input = create_tensor_input(frame, region)
 | 
			
		||||
 | 
			
		||||
        # draw the bounding boxes on the screen
 | 
			
		||||
            region_detections = object_detector.detect(tensor_input)
 | 
			
		||||
 | 
			
		||||
        if tracked_objects is None:
 | 
			
		||||
            with self.object_tracker.tracked_objects_lock:
 | 
			
		||||
                tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
 | 
			
		||||
            for d in region_detections:
 | 
			
		||||
                box = d[2]
 | 
			
		||||
                size = region[2]-region[0]
 | 
			
		||||
                x_min = int((box[1] * size) + region[0])
 | 
			
		||||
                y_min = int((box[0] * size) + region[1])
 | 
			
		||||
                x_max = int((box[3] * size) + region[0])
 | 
			
		||||
                y_max = int((box[2] * size) + region[1])
 | 
			
		||||
                det = (d[0],
 | 
			
		||||
                    d[1],
 | 
			
		||||
                    (x_min, y_min, x_max, y_max),
 | 
			
		||||
                    (x_max-x_min)*(y_max-y_min),
 | 
			
		||||
                    region)
 | 
			
		||||
                if filtered(det, objects_to_track, object_filters, mask):
 | 
			
		||||
                    continue
 | 
			
		||||
                detections.append(det)
 | 
			
		||||
 | 
			
		||||
        for obj in detected_objects:
 | 
			
		||||
            draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
 | 
			
		||||
        #########
 | 
			
		||||
        # merge objects, check for clipped objects and look again up to N times
 | 
			
		||||
        #########
 | 
			
		||||
        refining = True
 | 
			
		||||
        refine_count = 0
 | 
			
		||||
        while refining and refine_count < 4:
 | 
			
		||||
            refining = False
 | 
			
		||||
 | 
			
		||||
        for id, obj in tracked_objects.items():
 | 
			
		||||
            color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
 | 
			
		||||
            draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
 | 
			
		||||
            # group by name
 | 
			
		||||
            detected_object_groups = defaultdict(lambda: [])
 | 
			
		||||
            for detection in detections:
 | 
			
		||||
                detected_object_groups[detection[0]].append(detection)
 | 
			
		||||
 | 
			
		||||
        # print a timestamp
 | 
			
		||||
        time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
 | 
			
		||||
        cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
            selected_objects = []
 | 
			
		||||
            for group in detected_object_groups.values():
 | 
			
		||||
 | 
			
		||||
        # print fps
 | 
			
		||||
        cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
 | 
			
		||||
                # apply non-maxima suppression to suppress weak, overlapping bounding boxes
 | 
			
		||||
                boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
 | 
			
		||||
                    for o in group]
 | 
			
		||||
                confidences = [o[1] for o in group]
 | 
			
		||||
                idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
 | 
			
		||||
 | 
			
		||||
        # convert to BGR
 | 
			
		||||
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
 | 
			
		||||
                for index in idxs:
 | 
			
		||||
                    obj = group[index[0]]
 | 
			
		||||
                    if clipped(obj, frame_shape): #obj['clipped']:
 | 
			
		||||
                        box = obj[2]
 | 
			
		||||
                        # calculate a new region that will hopefully get the entire object
 | 
			
		||||
                        region = calculate_region(frame_shape, 
 | 
			
		||||
                            box[0], box[1],
 | 
			
		||||
                            box[2], box[3])
 | 
			
		||||
                        
 | 
			
		||||
        # encode the image into a jpg
 | 
			
		||||
        ret, jpg = cv2.imencode('.jpg', frame)
 | 
			
		||||
                        tensor_input = create_tensor_input(frame, region)
 | 
			
		||||
                        # run detection on new region
 | 
			
		||||
                        refined_detections = object_detector.detect(tensor_input)
 | 
			
		||||
                        for d in refined_detections:
 | 
			
		||||
                            box = d[2]
 | 
			
		||||
                            size = region[2]-region[0]
 | 
			
		||||
                            x_min = int((box[1] * size) + region[0])
 | 
			
		||||
                            y_min = int((box[0] * size) + region[1])
 | 
			
		||||
                            x_max = int((box[3] * size) + region[0])
 | 
			
		||||
                            y_max = int((box[2] * size) + region[1])
 | 
			
		||||
                            det = (d[0],
 | 
			
		||||
                                d[1],
 | 
			
		||||
                                (x_min, y_min, x_max, y_max),
 | 
			
		||||
                                (x_max-x_min)*(y_max-y_min),
 | 
			
		||||
                                region)
 | 
			
		||||
                            if filtered(det, objects_to_track, object_filters, mask):
 | 
			
		||||
                                continue
 | 
			
		||||
                            selected_objects.append(det)
 | 
			
		||||
 | 
			
		||||
        return jpg.tobytes()
 | 
			
		||||
                        refining = True
 | 
			
		||||
                    else:
 | 
			
		||||
                        selected_objects.append(obj)
 | 
			
		||||
                
 | 
			
		||||
    def get_current_frame_with_objects(self):
 | 
			
		||||
        frame_time = self.last_processed_frame
 | 
			
		||||
        if frame_time == self.cached_frame_with_objects['frame_time']:
 | 
			
		||||
            return self.cached_frame_with_objects['frame_bytes']
 | 
			
		||||
            # set the detections list to only include top, complete objects
 | 
			
		||||
            # and new detections
 | 
			
		||||
            detections = selected_objects
 | 
			
		||||
 | 
			
		||||
        frame_bytes = self.frame_with_objects(frame_time)
 | 
			
		||||
 | 
			
		||||
        self.cached_frame_with_objects = {
 | 
			
		||||
            'frame_bytes': frame_bytes,
 | 
			
		||||
            'frame_time': frame_time
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        return frame_bytes
 | 
			
		||||
            if refining:
 | 
			
		||||
                refine_count += 1
 | 
			
		||||
        
 | 
			
		||||
        # now that we have refined our detections, we need to track objects
 | 
			
		||||
        object_tracker.match_and_update(frame_time, detections)
 | 
			
		||||
 | 
			
		||||
        # put the frame in the plasma store
 | 
			
		||||
        object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
 | 
			
		||||
        plasma_client.put(frame, plasma.ObjectID(object_id))
 | 
			
		||||
        # add to the queue
 | 
			
		||||
        detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
 | 
			
		||||
 | 
			
		||||
        # if (frames >= 700 and frames <= 1635) or (frames >= 2500):
 | 
			
		||||
        # if (frames >= 300 and frames <= 600):
 | 
			
		||||
        # if (frames >= 0):
 | 
			
		||||
            # row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
 | 
			
		||||
            # row2 = cv2.hconcat([frameDelta, thresh])
 | 
			
		||||
            # cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
 | 
			
		||||
            # # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
 | 
			
		||||
            # for region in motion_regions:
 | 
			
		||||
            #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
 | 
			
		||||
            # for region in object_regions:
 | 
			
		||||
            #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
 | 
			
		||||
            # for region in merged_regions:
 | 
			
		||||
            #     cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
 | 
			
		||||
            # for box in motion_boxes:
 | 
			
		||||
            #     cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
 | 
			
		||||
            # for detection in detections:
 | 
			
		||||
            #     box = detection[2]
 | 
			
		||||
            #     draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
 | 
			
		||||
            # for obj in object_tracker.tracked_objects.values():
 | 
			
		||||
            #     box = obj['box']
 | 
			
		||||
            #     draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
 | 
			
		||||
            # cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
			
		||||
            # cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
 | 
			
		||||
            # cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
 | 
			
		||||
            # break
 | 
			
		||||
 | 
			
		||||
    # start a thread to publish object scores
 | 
			
		||||
    # mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
 | 
			
		||||
    # mqtt_publisher.start()
 | 
			
		||||
 | 
			
		||||
    # create a watchdog thread for capture process
 | 
			
		||||
    # self.watchdog = CameraWatchdog(self)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user