mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
allow motion based retention when detect is disabled
This commit is contained in:
parent
5792cf042e
commit
583912db9c
409
frigate/video.py
409
frigate/video.py
@ -491,212 +491,219 @@ def process_frames(
|
||||
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
|
||||
continue
|
||||
|
||||
if not detection_enabled.value:
|
||||
fps.value = fps_tracker.eps()
|
||||
object_tracker.match_and_update(frame_time, [])
|
||||
detected_objects_queue.put(
|
||||
(camera_name, frame_time, object_tracker.tracked_objects, [], [])
|
||||
)
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
frame_manager.close(f"{camera_name}{frame_time}")
|
||||
continue
|
||||
|
||||
# look for motion
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
# get stationary object ids
|
||||
# check every Nth frame for stationary objects
|
||||
# disappeared objects are not stationary
|
||||
# also check for overlapping motion boxes
|
||||
stationary_object_ids = [
|
||||
obj["id"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
# if there hasn't been motion for 10 frames
|
||||
if obj["motionless_count"] >= 10
|
||||
# and it isn't due for a periodic check
|
||||
and (
|
||||
detect_config.stationary_interval == 0
|
||||
or obj["motionless_count"] % detect_config.stationary_interval != 0
|
||||
)
|
||||
# and it hasn't disappeared
|
||||
and object_tracker.disappeared[obj["id"]] == 0
|
||||
# and it doesn't overlap with any current motion boxes
|
||||
and not intersects_any(obj["box"], motion_boxes)
|
||||
]
|
||||
regions = []
|
||||
|
||||
# get tracked object boxes that aren't stationary
|
||||
tracked_object_boxes = [
|
||||
obj["box"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if not obj["id"] in stationary_object_ids
|
||||
]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
|
||||
region_min_size = max(model_shape[0], model_shape[1])
|
||||
# compute regions
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
a[0],
|
||||
a[1],
|
||||
a[2],
|
||||
a[3],
|
||||
region_min_size,
|
||||
multiplier=random.uniform(1.2, 1.5),
|
||||
)
|
||||
for a in combined_boxes
|
||||
]
|
||||
|
||||
# consolidate regions with heavy overlap
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
|
||||
)
|
||||
for a in reduce_boxes(regions, 0.4)
|
||||
]
|
||||
|
||||
# if starting up, get the next startup scan region
|
||||
if startup_scan_counter < 9:
|
||||
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
|
||||
ymax = int(frame_shape[0] / 3 + ymin)
|
||||
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
|
||||
xmax = int(frame_shape[1] / 3 + xmin)
|
||||
regions.append(
|
||||
calculate_region(
|
||||
frame_shape, xmin, ymin, xmax, ymax, region_min_size, multiplier=1.2
|
||||
)
|
||||
)
|
||||
startup_scan_counter += 1
|
||||
|
||||
# resize regions and detect
|
||||
# seed with stationary objects
|
||||
detections = [
|
||||
(
|
||||
obj["label"],
|
||||
obj["score"],
|
||||
obj["box"],
|
||||
obj["area"],
|
||||
obj["region"],
|
||||
)
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if obj["id"] in stationary_object_ids
|
||||
]
|
||||
|
||||
for region in regions:
|
||||
detections.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
#########
|
||||
refining = len(regions) > 0
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [
|
||||
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(
|
||||
frame_shape, box[0], box[1], box[2], box[3], region_min_size
|
||||
)
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
|
||||
## drop detections that overlap too much
|
||||
consolidated_detections = []
|
||||
|
||||
# if detection was run on this frame, consolidate
|
||||
if len(regions) > 0:
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
# loop over detections grouped by label
|
||||
for group in detected_object_groups.values():
|
||||
# if the group only has 1 item, skip
|
||||
if len(group) == 1:
|
||||
consolidated_detections.append(group[0])
|
||||
continue
|
||||
|
||||
# sort smallest to largest by area
|
||||
sorted_by_area = sorted(group, key=lambda g: g[3])
|
||||
|
||||
for current_detection_idx in range(0, len(sorted_by_area)):
|
||||
current_detection = sorted_by_area[current_detection_idx][2]
|
||||
overlap = 0
|
||||
for to_check_idx in range(
|
||||
min(current_detection_idx + 1, len(sorted_by_area)),
|
||||
len(sorted_by_area),
|
||||
):
|
||||
to_check = sorted_by_area[to_check_idx][2]
|
||||
# if 90% of smaller detection is inside of another detection, consolidate
|
||||
if (
|
||||
area(intersection(current_detection, to_check))
|
||||
/ area(current_detection)
|
||||
> 0.9
|
||||
):
|
||||
overlap = 1
|
||||
break
|
||||
if overlap == 0:
|
||||
consolidated_detections.append(
|
||||
sorted_by_area[current_detection_idx]
|
||||
)
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, consolidated_detections)
|
||||
# else, just update the frame times for the stationary objects
|
||||
# if detection is disabled
|
||||
if not detection_enabled.value:
|
||||
object_tracker.match_and_update(frame_time, [])
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
# get stationary object ids
|
||||
# check every Nth frame for stationary objects
|
||||
# disappeared objects are not stationary
|
||||
# also check for overlapping motion boxes
|
||||
stationary_object_ids = [
|
||||
obj["id"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
# if there hasn't been motion for 10 frames
|
||||
if obj["motionless_count"] >= 10
|
||||
# and it isn't due for a periodic check
|
||||
and (
|
||||
detect_config.stationary_interval == 0
|
||||
or obj["motionless_count"] % detect_config.stationary_interval != 0
|
||||
)
|
||||
# and it hasn't disappeared
|
||||
and object_tracker.disappeared[obj["id"]] == 0
|
||||
# and it doesn't overlap with any current motion boxes
|
||||
and not intersects_any(obj["box"], motion_boxes)
|
||||
]
|
||||
|
||||
# get tracked object boxes that aren't stationary
|
||||
tracked_object_boxes = [
|
||||
obj["box"]
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if not obj["id"] in stationary_object_ids
|
||||
]
|
||||
|
||||
# combine motion boxes with known locations of existing objects
|
||||
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
|
||||
|
||||
region_min_size = max(model_shape[0], model_shape[1])
|
||||
# compute regions
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
a[0],
|
||||
a[1],
|
||||
a[2],
|
||||
a[3],
|
||||
region_min_size,
|
||||
multiplier=random.uniform(1.2, 1.5),
|
||||
)
|
||||
for a in combined_boxes
|
||||
]
|
||||
|
||||
# consolidate regions with heavy overlap
|
||||
regions = [
|
||||
calculate_region(
|
||||
frame_shape, a[0], a[1], a[2], a[3], region_min_size, multiplier=1.0
|
||||
)
|
||||
for a in reduce_boxes(regions, 0.4)
|
||||
]
|
||||
|
||||
# if starting up, get the next startup scan region
|
||||
if startup_scan_counter < 9:
|
||||
ymin = int(frame_shape[0] / 3 * startup_scan_counter / 3)
|
||||
ymax = int(frame_shape[0] / 3 + ymin)
|
||||
xmin = int(frame_shape[1] / 3 * startup_scan_counter / 3)
|
||||
xmax = int(frame_shape[1] / 3 + xmin)
|
||||
regions.append(
|
||||
calculate_region(
|
||||
frame_shape,
|
||||
xmin,
|
||||
ymin,
|
||||
xmax,
|
||||
ymax,
|
||||
region_min_size,
|
||||
multiplier=1.2,
|
||||
)
|
||||
)
|
||||
startup_scan_counter += 1
|
||||
|
||||
# resize regions and detect
|
||||
# seed with stationary objects
|
||||
detections = [
|
||||
(
|
||||
obj["label"],
|
||||
obj["score"],
|
||||
obj["box"],
|
||||
obj["area"],
|
||||
obj["region"],
|
||||
)
|
||||
for obj in object_tracker.tracked_objects.values()
|
||||
if obj["id"] in stationary_object_ids
|
||||
]
|
||||
|
||||
for region in regions:
|
||||
detections.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to 4 times
|
||||
#########
|
||||
refining = len(regions) > 0
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [
|
||||
(o[2][0], o[2][1], o[2][2] - o[2][0], o[2][3] - o[2][1])
|
||||
for o in group
|
||||
]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape):
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(
|
||||
frame_shape,
|
||||
box[0],
|
||||
box[1],
|
||||
box[2],
|
||||
box[3],
|
||||
region_min_size,
|
||||
)
|
||||
|
||||
regions.append(region)
|
||||
|
||||
selected_objects.extend(
|
||||
detect(
|
||||
object_detector,
|
||||
frame,
|
||||
model_shape,
|
||||
region,
|
||||
objects_to_track,
|
||||
object_filters,
|
||||
)
|
||||
)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
|
||||
## drop detections that overlap too much
|
||||
consolidated_detections = []
|
||||
|
||||
# if detection was run on this frame, consolidate
|
||||
if len(regions) > 0:
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
# loop over detections grouped by label
|
||||
for group in detected_object_groups.values():
|
||||
# if the group only has 1 item, skip
|
||||
if len(group) == 1:
|
||||
consolidated_detections.append(group[0])
|
||||
continue
|
||||
|
||||
# sort smallest to largest by area
|
||||
sorted_by_area = sorted(group, key=lambda g: g[3])
|
||||
|
||||
for current_detection_idx in range(0, len(sorted_by_area)):
|
||||
current_detection = sorted_by_area[current_detection_idx][2]
|
||||
overlap = 0
|
||||
for to_check_idx in range(
|
||||
min(current_detection_idx + 1, len(sorted_by_area)),
|
||||
len(sorted_by_area),
|
||||
):
|
||||
to_check = sorted_by_area[to_check_idx][2]
|
||||
# if 90% of smaller detection is inside of another detection, consolidate
|
||||
if (
|
||||
area(intersection(current_detection, to_check))
|
||||
/ area(current_detection)
|
||||
> 0.9
|
||||
):
|
||||
overlap = 1
|
||||
break
|
||||
if overlap == 0:
|
||||
consolidated_detections.append(
|
||||
sorted_by_area[current_detection_idx]
|
||||
)
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, consolidated_detections)
|
||||
# else, just update the frame times for the stationary objects
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
|
||||
# add to the queue if not full
|
||||
if detected_objects_queue.full():
|
||||
|
Loading…
Reference in New Issue
Block a user