diff --git a/frigate/embeddings/maintainer.py b/frigate/embeddings/maintainer.py index 13c5a26c5..d3df385cc 100644 --- a/frigate/embeddings/maintainer.py +++ b/frigate/embeddings/maintainer.py @@ -105,7 +105,7 @@ class EmbeddingMaintainer(threading.Thread): # Lazily create the classifier. if "face_detector" not in self.__dict__: self.__dict__["face_detector"] = cv2.FaceDetectorYN.create( - "/config/model_cache/facenet/facedet.onnx", + "/config/model_cache/facedet/facedet.onnx", config="", input_size=(320, 320), score_threshold=0.8, diff --git a/frigate/util/model.py b/frigate/util/model.py index cc4ccb0d0..b3e310225 100644 --- a/frigate/util/model.py +++ b/frigate/util/model.py @@ -163,7 +163,7 @@ class FaceClassificationModel: self.config = config self.db = db self.landmark_detector = cv2.face.createFacemarkLBF() - self.landmark_detector.loadModel("/config/model_cache/facenet/landmarkdet.yaml") + self.landmark_detector.loadModel("/config/model_cache/facedet/landmarkdet.yaml") self.recognizer: cv2.face.LBPHFaceRecognizer = ( cv2.face.LBPHFaceRecognizer_create( radius=2, threshold=(1 - config.threshold) * 1000