basic motion detection working

This commit is contained in:
blakeblackshear 2019-02-09 08:51:11 -06:00
parent d8f27658f8
commit 5d894f006a

View File

@ -1,5 +1,6 @@
import os
import cv2
import imutils
import time
import datetime
import ctypes
@ -24,8 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic?
NUM_CLASSES = 90
#REGIONS = "600,0,380:600,600,380:600,1200,380"
REGIONS = os.getenv('REGIONS')
REGIONS = "300,0,0:300,300,0:300,600,0"
#REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = []
@ -152,62 +153,77 @@ def main():
detection_process.daemon = True
detection_processes.append(detection_process)
motion_processes = []
for index, region in enumerate(regions):
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_memory_objects[index]['frame_time'],
shared_memory_objects[index]['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset']))
motion_process.daemon = True
motion_processes.append(motion_process)
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
object_parser.start()
# object_parser.start()
capture_process.start()
print("capture_process pid ", capture_process.pid)
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)
# for detection_process in detection_processes:
# detection_process.start()
# print("detection_process pid ", detection_process.pid)
for motion_process in motion_processes:
motion_process.start()
print("motion_process pid ", motion_process.pid)
app = Flask(__name__)
# app = Flask(__name__)
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# make a copy of the current frame
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in DETECTED_OBJECTS:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
# @app.route('/')
# def index():
# # return a multipart response
# return Response(imagestream(),
# mimetype='multipart/x-mixed-replace; boundary=frame')
# def imagestream():
# global DETECTED_OBJECTS
# while True:
# # max out at 5 FPS
# time.sleep(0.2)
# # make a copy of the current detected objects
# detected_objects = DETECTED_OBJECTS.copy()
# # make a copy of the current frame
# frame = frame_arr.copy()
# # convert to RGB for drawing
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# # draw the bounding boxes on the screen
# for obj in DETECTED_OBJECTS:
# vis_util.draw_bounding_box_on_image_array(frame,
# obj['ymin'],
# obj['xmin'],
# obj['ymax'],
# obj['xmax'],
# color='red',
# thickness=2,
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
# use_normalized_coordinates=False)
for region in regions:
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
(255,255,255), 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
# for region in regions:
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
# (255,255,255), 2)
# # convert back to BGR
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# # encode the image into a jpg
# ret, jpg = cv2.imencode('.jpg', frame)
# yield (b'--frame\r\n'
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
# app.run(host='0.0.0.0', debug=False)
capture_process.join()
for detection_process in detection_processes:
detection_process.join()
object_parser.join()
# for detection_process in detection_processes:
# detection_process.join()
for motion_process in motion_processes:
motion_process.join()
# object_parser.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
@ -307,6 +323,91 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
# do the actual object detection
def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
no_frames_available = -1
avg_frame = None
last_motion = -1
while True:
now = datetime.datetime.now().timestamp()
# if it has been 30 seconds since the last motion, clear the flag
if last_motion > 0 and (now - last_motion) > 30:
last_motion = -1
shared_motion.value = 0
print("motion cleared")
# if there isnt a frame ready for processing
if shared_frame_time.value == 0.0:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = now
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (now - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (now - shared_frame_time.value) > 0.5:
# signal that we need a new frame
shared_frame_time.value = 0.0
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
shared_frame_time.value = 0.0
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# convert to uint8
gray = (gray/256).astype('uint8')
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
cv2.accumulateWeighted(gray, avg_frame, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is too small, ignore it
if cv2.contourArea(c) < 50:
continue
print("motion_detected")
last_motion = now
shared_motion.value = 1
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
if __name__ == '__main__':
mp.freeze_support()
main()