diff --git a/frigate/api/review.py b/frigate/api/review.py index 6c159c66f..7cc3d2695 100644 --- a/frigate/api/review.py +++ b/frigate/api/review.py @@ -5,12 +5,7 @@ from datetime import datetime, timedelta from functools import reduce import pandas as pd -from flask import ( - Blueprint, - jsonify, - make_response, - request, -) +from flask import Blueprint, jsonify, make_response, request from peewee import Case, DoesNotExist, fn, operator from frigate.models import Recordings, ReviewSegment @@ -363,35 +358,23 @@ def motion_activity(): ) clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)] + clauses.append((Recordings.motion <= 100)) if cameras != "all": camera_list = cameras.split(",") clauses.append((Recordings.camera << camera_list)) - all_recordings: list[Recordings] = ( + data: list[Recordings] = ( Recordings.select( Recordings.start_time, - Recordings.duration, - Recordings.objects, Recordings.motion, ) .where(reduce(operator.and_, clauses)) .order_by(Recordings.start_time.asc()) + .dicts() .iterator() ) - # format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] } - # periods where active objects / audio was detected will cause motion to be scaled down - data: list[dict[str, float]] = [] - - for rec in all_recordings: - data.append( - { - "start_time": rec.start_time, - "motion": rec.motion if rec.objects == 0 else 0, - } - ) - # get scale in seconds scale = request.args.get("scale", type=int, default=30) @@ -403,16 +386,10 @@ def motion_activity(): df.set_index(["start_time"], inplace=True) # normalize data - df = df.resample(f"{scale}S").sum().fillna(0.0) - mean = df["motion"].mean() - std = df["motion"].std() - df["motion"] = (df["motion"] - mean) / std - outliers = df.quantile(0.999)["motion"] - df[df > outliers] = outliers - df["motion"] = ( - (df["motion"] - df["motion"].min()) - / (df["motion"].max() - df["motion"].min()) - * 100 + df = ( + df.resample(f"{scale}S") + .apply(lambda x: max(x, key=abs, default=0.0)) + .fillna(0.0) ) # change types for output diff --git a/frigate/record/maintainer.py b/frigate/record/maintainer.py index 13e29f2d0..71c7a6a3d 100644 --- a/frigate/record/maintainer.py +++ b/frigate/record/maintainer.py @@ -71,6 +71,13 @@ class RecordingMaintainer(threading.Thread): self.audio_recordings_info: dict[str, list] = defaultdict(list) self.end_time_cache: dict[str, Tuple[datetime.datetime, float]] = {} + self.camera_frame_area: dict[str, int] = {} + + for camera in self.config.cameras.values(): + self.camera_frame_area[camera.name] = ( + camera.detect.width * camera.detect.height * 0.1 + ) + async def move_files(self) -> None: cache_files = [ d @@ -289,8 +296,9 @@ class RecordingMaintainer(threading.Thread): def segment_stats( self, camera: str, start_time: datetime.datetime, end_time: datetime.datetime ) -> SegmentInfo: + video_frame_count = 0 active_count = 0 - motion_count = 0 + total_motion_area = 0 for frame in self.object_recordings_info[camera]: # frame is after end time of segment if frame[0] > end_time.timestamp(): @@ -299,6 +307,7 @@ class RecordingMaintainer(threading.Thread): if frame[0] < start_time.timestamp(): continue + video_frame_count += 1 active_count += len( [ o @@ -307,7 +316,21 @@ class RecordingMaintainer(threading.Thread): ] ) - motion_count += sum([area(box) for box in frame[2]]) + total_motion_area += sum([area(box) for box in frame[2]]) + + if video_frame_count > 0: + normalized_motion_area = min( + int( + ( + total_motion_area + / (self.camera_frame_area[camera] * video_frame_count) + ) + * 100 + ), + 100, + ) + else: + normalized_motion_area = 0 audio_values = [] for frame in self.audio_recordings_info[camera]: @@ -327,7 +350,7 @@ class RecordingMaintainer(threading.Thread): average_dBFS = 0 if not audio_values else np.average(audio_values) - return SegmentInfo(motion_count, active_count, round(average_dBFS)) + return SegmentInfo(normalized_motion_area, active_count, round(average_dBFS)) async def move_segment( self,