detectors/rocm: separated preprocessing functions into yolo_utils.py

This commit is contained in:
Indrek Mandre 2024-01-27 22:35:32 +02:00
parent c93a508052
commit 622a45ef12
2 changed files with 38 additions and 22 deletions

View File

@ -12,29 +12,12 @@ import cv2
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
import frigate.detectors.yolo_utils as yolo_utils
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rocm"
# XXX several detectors run yolov8, this should probably be common code in some utils module
def postprocess_yolov8(model_input_shape, tensor_output, box_count = 20):
model_box_count = tensor_output.shape[2]
model_class_count = tensor_output.shape[1] - 4
probs = tensor_output[0, 4:, :]
all_ids = np.argmax(probs, axis=0)
all_confidences = np.take(probs.T, model_class_count*np.arange(0, model_box_count) + all_ids)
all_boxes = tensor_output[0, 0:4, :].T
mask = (all_confidences > 0.30)
class_ids = all_ids[mask]
confidences = all_confidences[mask]
cx, cy, w, h = all_boxes[mask].T
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1)
if detections.shape[0] > box_count:
detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]]
detections.resize((box_count, 6))
return detections
class ROCmDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
@ -47,7 +30,7 @@ class ROCmDetector(DetectionApi):
import migraphx
logger.info(f"AMD/ROCm: loaded migraphx module")
except ValueError:
except ModuleNotFoundError:
logger.error(
"AMD/ROCm: module loading failed, missing ROCm environment?"
)
@ -88,12 +71,12 @@ class ROCmDetector(DetectionApi):
model_input_name = self.model.get_parameter_names()[0];
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
tensor_input = cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
tensor_input = yolo_utils.yolov8_preprocess(tensor_input, model_input_shape)
detector_result = self.model.run({model_input_name: tensor_input})[0]
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens())
return postprocess_yolov8(model_input_shape, tensor_output)
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)

View File

@ -0,0 +1,33 @@
import logging
import numpy as np
import cv2
logger = logging.getLogger(__name__)
def yolov8_preprocess(tensor_input, model_input_shape):
# tensor_input must be nhwc
assert tensor_input.shape[3] == 3
if tuple(tensor_input.shape[1:3]) != tuple(model_input_shape[2:4]):
logger.warn(f"yolov8_preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!")
# cv2.dnn.blobFromImage is faster than numpying it
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20):
model_box_count = tensor_output.shape[2]
model_class_count = tensor_output.shape[1] - 4
probs = tensor_output[0, 4:, :]
all_ids = np.argmax(probs, axis=0)
all_confidences = np.take(probs.T, model_class_count*np.arange(0, model_box_count) + all_ids)
all_boxes = tensor_output[0, 0:4, :].T
mask = (all_confidences > 0.30)
class_ids = all_ids[mask]
confidences = all_confidences[mask]
cx, cy, w, h = all_boxes[mask].T
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1)
if detections.shape[0] > box_count:
detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]]
detections.resize((box_count, 6))
return detections