diff --git a/frigate/video.py b/frigate/video.py index bb6e738f9..371e6b8c1 100644 --- a/frigate/video.py +++ b/frigate/video.py @@ -20,6 +20,7 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s # start the video capture video = cv2.VideoCapture() video.open(rtsp_url) + print("Opening the RTSP Url...") # keep the buffer small so we minimize old data video.set(cv2.CAP_PROP_BUFFERSIZE,1) @@ -109,6 +110,22 @@ def get_rtsp_url(rtsp_config): rtsp_config['password'], rtsp_config['host'], rtsp_config['port'], rtsp_config['path']) +class CameraWatchdog(threading.Thread): + def __init__(self, camera): + threading.Thread.__init__(self) + self.camera = camera + + def run(self): + + while True: + # wait a bit before checking + time.sleep(60) + + if (datetime.datetime.now().timestamp() - self.camera.shared_frame_time.value) > 2: + print("last frame is more than 2 seconds old, restarting camera capture...") + self.camera.start_or_restart_capture() + time.sleep(5) + class Camera: def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix): self.name = name @@ -137,10 +154,7 @@ class Camera: # shape current frame so it can be treated as a numpy image self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape) - # create the process to capture frames from the RTSP stream and store in a shared array - self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array, - self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url)) - self.capture_process.daemon = True + self.capture_process = None # for each region, create a separate thread to resize the region and prep for detection self.detection_prep_threads = [] @@ -172,18 +186,38 @@ class Camera: mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects) mqtt_publisher.start() + # create a watchdog thread for capture process + self.watchdog = CameraWatchdog(self) + # load in the mask for person detection if 'mask' in self.config: self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE) else: self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8) self.mask[:] = 255 + + + def start_or_restart_capture(self): + if not self.capture_process is None: + print("Terminating the existing capture process...") + self.capture_process.terminate() + del self.capture_process + self.capture_process = None + + # create the process to capture frames from the RTSP stream and store in a shared array + print("Creating a new capture process...") + self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array, + self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url)) + self.capture_process.daemon = True + print("Starting a new capture process...") + self.capture_process.start() def start(self): - self.capture_process.start() + self.start_or_restart_capture() # start the object detection prep threads for detection_prep_thread in self.detection_prep_threads: detection_prep_thread.start() + self.watchdog.start() def join(self): self.capture_process.join()