mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
initial implementation of zones
This commit is contained in:
parent
3a1f1c946b
commit
69f5249788
@ -68,6 +68,41 @@ objects:
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
|
||||
zones:
|
||||
#################
|
||||
# Name of the zone
|
||||
################
|
||||
front_steps:
|
||||
cameras:
|
||||
front_door:
|
||||
####################
|
||||
# For each camera, a list of x,y coordinates to define the polygon of the zone.
|
||||
# Can also be a comma separated string of all x,y coordinates combined.
|
||||
# The same zone can exist across multiple cameras if they have overlapping FOVs.
|
||||
# An object is determined to be in the zone based on whether or not the bottom center
|
||||
# of it's bounding box is within the polygon. The polygon must have at least 3 points.
|
||||
# Coordinates can be generated at https://www.image-map.net/
|
||||
####################
|
||||
coordinates:
|
||||
- 545,1077
|
||||
- 747,939
|
||||
- 788,805
|
||||
################
|
||||
# Zone level object filters. These are applied in addition to the global and camera filters
|
||||
# and should be more restrictive than the global and camera filters. The global and camera
|
||||
# filters are applied upstream.
|
||||
################
|
||||
filters:
|
||||
person:
|
||||
min_area: 5000
|
||||
max_area: 100000
|
||||
threshold: 0.5
|
||||
driveway:
|
||||
cameras:
|
||||
front_door:
|
||||
coordinates: 545,1077,747,939,788,805
|
||||
yard:
|
||||
|
||||
cameras:
|
||||
back:
|
||||
ffmpeg:
|
||||
@ -137,6 +172,7 @@ cameras:
|
||||
################
|
||||
snapshots:
|
||||
show_timestamp: True
|
||||
draw_zones: False
|
||||
|
||||
################
|
||||
# Camera level object config. This config is merged with the global config above.
|
||||
|
@ -171,7 +171,8 @@ def main():
|
||||
##
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
config['snapshots'] = {
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True),
|
||||
'draw_zones': config.get('snapshots', {}).get('draw_zones', False)
|
||||
}
|
||||
|
||||
# Queue for cameras to push tracked objects to
|
||||
@ -265,7 +266,7 @@ def main():
|
||||
event_processor = EventProcessor(CONFIG['cameras'], camera_processes, '/cache', '/clips', event_queue)
|
||||
event_processor.start()
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue)
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], CONFIG.get('zones', {}), client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process)
|
||||
|
@ -27,10 +27,34 @@ def filter_false_positives(event):
|
||||
return True
|
||||
return False
|
||||
|
||||
def zone_filtered(obj, object_config):
|
||||
object_name = obj['label']
|
||||
object_filters = object_config.get('filters', {})
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', 24000000) < obj['area']:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, config, client, topic_prefix, tracked_objects_queue, event_queue):
|
||||
def __init__(self, camera_config, zone_config, client, topic_prefix, tracked_objects_queue, event_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.config = config
|
||||
self.camera_config = camera_config
|
||||
self.zone_config = zone_config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
@ -43,6 +67,28 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
'current_frame_time': 0.0,
|
||||
'object_id': None
|
||||
})
|
||||
self.zone_data = defaultdict(lambda: {
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'contours': {}
|
||||
})
|
||||
|
||||
# create zone contours
|
||||
for name, config in zone_config.items():
|
||||
for camera, camera_zone_config in config.items():
|
||||
coordinates = camera_zone_config['coordinates']
|
||||
if isinstance(coordinates, list):
|
||||
self.zone_data[name]['contours'][camera] = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in coordinates])
|
||||
elif isinstance(coordinates, str):
|
||||
points = coordinates.split(',')
|
||||
self.zone_data[name]['contours'][camera] = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
|
||||
else:
|
||||
print(f"Unable to parse zone coordinates for {name} - {camera}")
|
||||
|
||||
# set colors for zones
|
||||
colors = plt.cm.get_cmap('tab10', len(self.zone_data.keys()))
|
||||
for i, zone in enumerate(self.zone_data.values()):
|
||||
zone['color'] = tuple(int(round(255 * c)) for c in colors(i)[:3])
|
||||
|
||||
self.plasma_client = PlasmaManager()
|
||||
|
||||
def get_best(self, camera, label):
|
||||
@ -58,7 +104,7 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
while True:
|
||||
camera, frame_time, current_tracked_objects = self.tracked_objects_queue.get()
|
||||
|
||||
config = self.config[camera]
|
||||
camera_config = self.camera_config[camera]
|
||||
best_objects = self.camera_data[camera]['best_objects']
|
||||
current_object_status = self.camera_data[camera]['object_status']
|
||||
tracked_objects = self.camera_data[camera]['tracked_objects']
|
||||
@ -89,6 +135,17 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
|
||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
||||
|
||||
# build a dict of objects in each zone for current camera
|
||||
current_objects_in_zones = defaultdict(lambda: [])
|
||||
for obj in tracked_objects.values():
|
||||
bottom_center = (obj['centroid'][0], obj['box'][3])
|
||||
# check each zone
|
||||
for name, zone in self.zone_data.items():
|
||||
# check each camera with a contour for the zone
|
||||
for camera, contour in zone['contours'].items():
|
||||
if cv2.pointPolygonTest(contour, bottom_center, False) >= 0 and not zone_filtered(obj, self.zone_config[name][camera].get('filters', {})):
|
||||
current_objects_in_zones[name].append(obj['label'])
|
||||
|
||||
###
|
||||
# Draw tracked objects on the frame
|
||||
###
|
||||
@ -111,10 +168,16 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
region = obj['region']
|
||||
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||
|
||||
if config['snapshots']['show_timestamp']:
|
||||
if camera_config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
if camera_config['snapshots']['draw_zones']:
|
||||
for name, zone in self.zone_data.items():
|
||||
thickness = 2 if len(current_objects_in_zones[name]) == 0 else 8
|
||||
if camera in zone['contours']:
|
||||
cv2.drawContours(current_frame, [zone['contours'][camera]], -1, zone['color'], thickness)
|
||||
|
||||
###
|
||||
# Set the current frame
|
||||
###
|
||||
@ -152,7 +215,26 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
###
|
||||
# Report over MQTT
|
||||
###
|
||||
# count objects by type
|
||||
|
||||
# get the zones that are relevant for this camera
|
||||
relevant_zones = [zone for zone, config in self.zone_config.items() if camera in config]
|
||||
# for each zone
|
||||
for zone in relevant_zones:
|
||||
# create the set of labels in the current frame and previously reported
|
||||
labels_for_zone = set(current_objects_in_zones[zone] + list(self.zone_data[zone]['object_status'][camera].keys()))
|
||||
# for each label
|
||||
for label in labels_for_zone:
|
||||
# compute the current 'ON' vs 'OFF' status by checking if any camera sees the object in the zone
|
||||
previous_state = any([camera[label] == 'ON' for camera in self.zone_data[zone]['object_status'].values()])
|
||||
self.zone_data[zone]['object_status'][camera][label] = 'ON' if label in current_objects_in_zones[zone] else 'OFF'
|
||||
new_state = any([camera[label] == 'ON' for camera in self.zone_data[zone]['object_status'].values()])
|
||||
# if the value is changing, send over MQTT
|
||||
if previous_state == False and new_state == True:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'ON', retain=False)
|
||||
elif previous_state == True and new_state == False:
|
||||
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", 'OFF', retain=False)
|
||||
|
||||
# count by type
|
||||
obj_counter = Counter()
|
||||
for obj in tracked_objects.values():
|
||||
obj_counter[obj['label']] += 1
|
||||
|
Loading…
Reference in New Issue
Block a user