mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-23 17:52:05 +02:00
memryx: fix model download bug when using multiple detectors (#20030)
* Add locking for model download files * ruff format --------- Co-authored-by: Abinila Siva <abinila.siva@memryx.com>
This commit is contained in:
parent
03fe054078
commit
6cd1d1f205
@ -177,6 +177,29 @@ class MemryXDetector(DetectionApi):
|
||||
logger.error(f"Failed to initialize MemryX model: {e}")
|
||||
raise
|
||||
|
||||
def _acquire_file_lock(self, lock_path: str, timeout: int = 60, poll: float = 0.2):
|
||||
"""
|
||||
Create an exclusive lock file. Blocks (with polling) until it can acquire,
|
||||
or raises TimeoutError. Uses only stdlib (os.O_EXCL).
|
||||
"""
|
||||
start = time.time()
|
||||
while True:
|
||||
try:
|
||||
fd = os.open(lock_path, os.O_CREAT | os.O_EXCL | os.O_RDWR)
|
||||
os.close(fd)
|
||||
return
|
||||
except FileExistsError:
|
||||
if time.time() - start > timeout:
|
||||
raise TimeoutError(f"Timeout waiting for lock: {lock_path}")
|
||||
time.sleep(poll)
|
||||
|
||||
def _release_file_lock(self, lock_path: str):
|
||||
"""Best-effort removal of the lock file."""
|
||||
try:
|
||||
os.remove(lock_path)
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
def load_yolo_constants(self):
|
||||
base = f"{self.cache_dir}/{self.model_folder}"
|
||||
# constants for yolov9 post-processing
|
||||
@ -188,122 +211,135 @@ class MemryXDetector(DetectionApi):
|
||||
if not os.path.exists(self.cache_dir):
|
||||
os.makedirs(self.cache_dir, exist_ok=True)
|
||||
|
||||
# ---------- CASE 1: user provided a custom model path ----------
|
||||
if self.memx_model_path:
|
||||
if not self.memx_model_path.endswith(".zip"):
|
||||
raise ValueError(
|
||||
f"Invalid model path: {self.memx_model_path}. "
|
||||
"Only .zip files are supported. Please provide a .zip model archive."
|
||||
)
|
||||
if not os.path.exists(self.memx_model_path):
|
||||
raise FileNotFoundError(
|
||||
f"Custom model zip not found: {self.memx_model_path}"
|
||||
)
|
||||
|
||||
logger.info(f"User provided zip model: {self.memx_model_path}")
|
||||
|
||||
# Extract custom zip into a separate area so it never clashes with MemryX cache
|
||||
custom_dir = os.path.join(
|
||||
self.cache_dir, "custom_models", self.model_folder
|
||||
)
|
||||
if os.path.isdir(custom_dir):
|
||||
shutil.rmtree(custom_dir)
|
||||
os.makedirs(custom_dir, exist_ok=True)
|
||||
|
||||
with zipfile.ZipFile(self.memx_model_path, "r") as zip_ref:
|
||||
zip_ref.extractall(custom_dir)
|
||||
logger.info(f"Custom model extracted to {custom_dir}.")
|
||||
|
||||
# Find .dfp and optional *_post.onnx recursively
|
||||
dfp_candidates = glob.glob(
|
||||
os.path.join(custom_dir, "**", "*.dfp"), recursive=True
|
||||
)
|
||||
post_candidates = glob.glob(
|
||||
os.path.join(custom_dir, "**", "*_post.onnx"), recursive=True
|
||||
)
|
||||
|
||||
if not dfp_candidates:
|
||||
raise FileNotFoundError(
|
||||
"No .dfp file found in custom model zip after extraction."
|
||||
)
|
||||
|
||||
self.memx_model_path = dfp_candidates[0]
|
||||
|
||||
# Handle post model requirements by model type
|
||||
if self.memx_model_type in [
|
||||
ModelTypeEnum.yologeneric,
|
||||
ModelTypeEnum.yolonas,
|
||||
ModelTypeEnum.ssd,
|
||||
]:
|
||||
if not post_candidates:
|
||||
raise FileNotFoundError(
|
||||
f"No *_post.onnx file found in custom model zip for {self.memx_model_type.name}."
|
||||
)
|
||||
self.memx_post_model = post_candidates[0]
|
||||
elif self.memx_model_type == ModelTypeEnum.yolox:
|
||||
# Explicitly ignore any post model even if present
|
||||
self.memx_post_model = None
|
||||
else:
|
||||
# Future model types can optionally use post if present
|
||||
self.memx_post_model = post_candidates[0] if post_candidates else None
|
||||
|
||||
logger.info(f"Using custom model: {self.memx_model_path}")
|
||||
return
|
||||
|
||||
# ---------- CASE 2: no custom model path -> use MemryX cached models ----------
|
||||
model_subdir = os.path.join(self.cache_dir, self.model_folder)
|
||||
dfp_path = os.path.join(model_subdir, self.expected_dfp_model)
|
||||
post_path = (
|
||||
os.path.join(model_subdir, self.expected_post_model)
|
||||
if self.expected_post_model
|
||||
else None
|
||||
)
|
||||
|
||||
dfp_exists = os.path.exists(dfp_path)
|
||||
post_exists = os.path.exists(post_path) if post_path else True
|
||||
|
||||
if dfp_exists and post_exists:
|
||||
logger.info("Using cached models.")
|
||||
self.memx_model_path = dfp_path
|
||||
self.memx_post_model = post_path
|
||||
if self.memx_model_type == ModelTypeEnum.yologeneric:
|
||||
self.load_yolo_constants()
|
||||
return
|
||||
|
||||
# ---------- CASE 3: download MemryX model (no cache) ----------
|
||||
logger.info(
|
||||
f"Model files not found locally. Downloading from {self.model_url}..."
|
||||
)
|
||||
zip_path = os.path.join(self.cache_dir, f"{self.model_folder}.zip")
|
||||
lock_path = os.path.join(self.cache_dir, f".{self.model_folder}.lock")
|
||||
self._acquire_file_lock(lock_path)
|
||||
|
||||
try:
|
||||
if not os.path.exists(zip_path):
|
||||
urllib.request.urlretrieve(self.model_url, zip_path)
|
||||
logger.info(f"Model ZIP downloaded to {zip_path}. Extracting...")
|
||||
# ---------- CASE 1: user provided a custom model path ----------
|
||||
if self.memx_model_path:
|
||||
if not self.memx_model_path.endswith(".zip"):
|
||||
raise ValueError(
|
||||
f"Invalid model path: {self.memx_model_path}. "
|
||||
"Only .zip files are supported. Please provide a .zip model archive."
|
||||
)
|
||||
if not os.path.exists(self.memx_model_path):
|
||||
raise FileNotFoundError(
|
||||
f"Custom model zip not found: {self.memx_model_path}"
|
||||
)
|
||||
|
||||
if not os.path.exists(model_subdir):
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
zip_ref.extractall(self.cache_dir)
|
||||
logger.info(f"Model extracted to {self.cache_dir}.")
|
||||
logger.info(f"User provided zip model: {self.memx_model_path}")
|
||||
|
||||
# Re-assign model paths after extraction
|
||||
self.memx_model_path = os.path.join(model_subdir, self.expected_dfp_model)
|
||||
self.memx_post_model = (
|
||||
# Extract custom zip into a separate area so it never clashes with MemryX cache
|
||||
custom_dir = os.path.join(
|
||||
self.cache_dir, "custom_models", self.model_folder
|
||||
)
|
||||
if os.path.isdir(custom_dir):
|
||||
shutil.rmtree(custom_dir)
|
||||
os.makedirs(custom_dir, exist_ok=True)
|
||||
|
||||
with zipfile.ZipFile(self.memx_model_path, "r") as zip_ref:
|
||||
zip_ref.extractall(custom_dir)
|
||||
logger.info(f"Custom model extracted to {custom_dir}.")
|
||||
|
||||
# Find .dfp and optional *_post.onnx recursively
|
||||
dfp_candidates = glob.glob(
|
||||
os.path.join(custom_dir, "**", "*.dfp"), recursive=True
|
||||
)
|
||||
post_candidates = glob.glob(
|
||||
os.path.join(custom_dir, "**", "*_post.onnx"), recursive=True
|
||||
)
|
||||
|
||||
if not dfp_candidates:
|
||||
raise FileNotFoundError(
|
||||
"No .dfp file found in custom model zip after extraction."
|
||||
)
|
||||
|
||||
self.memx_model_path = dfp_candidates[0]
|
||||
|
||||
# Handle post model requirements by model type
|
||||
if self.memx_model_type in [
|
||||
ModelTypeEnum.yologeneric,
|
||||
ModelTypeEnum.yolonas,
|
||||
ModelTypeEnum.ssd,
|
||||
]:
|
||||
if not post_candidates:
|
||||
raise FileNotFoundError(
|
||||
f"No *_post.onnx file found in custom model zip for {self.memx_model_type.name}."
|
||||
)
|
||||
self.memx_post_model = post_candidates[0]
|
||||
elif self.memx_model_type == ModelTypeEnum.yolox:
|
||||
# Explicitly ignore any post model even if present
|
||||
self.memx_post_model = None
|
||||
else:
|
||||
# Future model types can optionally use post if present
|
||||
self.memx_post_model = (
|
||||
post_candidates[0] if post_candidates else None
|
||||
)
|
||||
|
||||
logger.info(f"Using custom model: {self.memx_model_path}")
|
||||
return
|
||||
|
||||
# ---------- CASE 2: no custom model path -> use MemryX cached models ----------
|
||||
model_subdir = os.path.join(self.cache_dir, self.model_folder)
|
||||
dfp_path = os.path.join(model_subdir, self.expected_dfp_model)
|
||||
post_path = (
|
||||
os.path.join(model_subdir, self.expected_post_model)
|
||||
if self.expected_post_model
|
||||
else None
|
||||
)
|
||||
|
||||
if self.memx_model_type == ModelTypeEnum.yologeneric:
|
||||
self.load_yolo_constants()
|
||||
dfp_exists = os.path.exists(dfp_path)
|
||||
post_exists = os.path.exists(post_path) if post_path else True
|
||||
|
||||
if dfp_exists and post_exists:
|
||||
logger.info("Using cached models.")
|
||||
self.memx_model_path = dfp_path
|
||||
self.memx_post_model = post_path
|
||||
if self.memx_model_type == ModelTypeEnum.yologeneric:
|
||||
self.load_yolo_constants()
|
||||
return
|
||||
|
||||
# ---------- CASE 3: download MemryX model (no cache) ----------
|
||||
logger.info(
|
||||
f"Model files not found locally. Downloading from {self.model_url}..."
|
||||
)
|
||||
zip_path = os.path.join(self.cache_dir, f"{self.model_folder}.zip")
|
||||
|
||||
try:
|
||||
if not os.path.exists(zip_path):
|
||||
urllib.request.urlretrieve(self.model_url, zip_path)
|
||||
logger.info(f"Model ZIP downloaded to {zip_path}. Extracting...")
|
||||
|
||||
if not os.path.exists(model_subdir):
|
||||
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
||||
zip_ref.extractall(self.cache_dir)
|
||||
logger.info(f"Model extracted to {self.cache_dir}.")
|
||||
|
||||
# Re-assign model paths after extraction
|
||||
self.memx_model_path = os.path.join(
|
||||
model_subdir, self.expected_dfp_model
|
||||
)
|
||||
self.memx_post_model = (
|
||||
os.path.join(model_subdir, self.expected_post_model)
|
||||
if self.expected_post_model
|
||||
else None
|
||||
)
|
||||
|
||||
if self.memx_model_type == ModelTypeEnum.yologeneric:
|
||||
self.load_yolo_constants()
|
||||
|
||||
finally:
|
||||
if os.path.exists(zip_path):
|
||||
try:
|
||||
os.remove(zip_path)
|
||||
logger.info("Cleaned up ZIP file after extraction.")
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to remove downloaded zip {zip_path}: {e}"
|
||||
)
|
||||
|
||||
finally:
|
||||
if os.path.exists(zip_path):
|
||||
try:
|
||||
os.remove(zip_path)
|
||||
logger.info("Cleaned up ZIP file after extraction.")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to remove downloaded zip {zip_path}: {e}")
|
||||
self._release_file_lock(lock_path)
|
||||
|
||||
def send_input(self, connection_id, tensor_input: np.ndarray):
|
||||
"""Pre-process (if needed) and send frame to MemryX input queue"""
|
||||
|
Loading…
Reference in New Issue
Block a user