mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-31 00:18:55 +01:00
commit
6e8409d203
12
Dockerfile
12
Dockerfile
@ -61,17 +61,17 @@ RUN cd /usr/local/src/ \
|
||||
RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension
|
||||
|
||||
# Download & build OpenCV
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/3.4.1.zip
|
||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||
RUN cd /usr/local/src/ \
|
||||
&& unzip 3.4.1.zip \
|
||||
&& rm 3.4.1.zip \
|
||||
&& cd /usr/local/src/opencv-3.4.1/ \
|
||||
&& unzip 4.0.1.zip \
|
||||
&& rm 4.0.1.zip \
|
||||
&& cd /usr/local/src/opencv-4.0.1/ \
|
||||
&& mkdir build \
|
||||
&& cd /usr/local/src/opencv-3.4.1/build \
|
||||
&& cd /usr/local/src/opencv-4.0.1/build \
|
||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||
&& make -j4 \
|
||||
&& make install \
|
||||
&& rm -rf /usr/local/src/opencv-3.4.1
|
||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||
|
||||
# Minimize image size
|
||||
RUN (apt-get autoremove -y; \
|
||||
|
43
README.md
43
README.md
@ -1,10 +1,12 @@
|
||||
# Realtime Object Detection for RTSP Cameras
|
||||
This results in a MJPEG stream with objects identified that has a lower latency than directly viewing the RTSP feed with VLC.
|
||||
- Prioritizes realtime processing over frames per second. Dropping frames is fine.
|
||||
- OpenCV runs in a separate process so it can grab frames as quickly as possible to ensure there aren't old frames in the buffer
|
||||
- Object detection with Tensorflow runs in a separate process and ignores frames that are more than 0.5 seconds old
|
||||
- Uses shared memory arrays for handing frames between processes
|
||||
- Provides a url for viewing the video feed at a hard coded ~5FPS as an mjpeg stream
|
||||
- Frames are only encoded into mjpeg stream when it is being viewed
|
||||
- A process is created per detection region
|
||||
|
||||
## Getting Started
|
||||
Build the container with
|
||||
@ -23,13 +25,46 @@ docker run -it --rm \
|
||||
-v <path_to_labelmap.pbtext>:/label_map.pbtext:ro \
|
||||
-p 5000:5000 \
|
||||
-e RTSP_URL='<rtsp_url>' \
|
||||
-e REGIONS='<box_size_1>,<x_offset_1>,<y_offset_1>:<box_size_2>,<x_offset_2>,<y_offset_2>' \
|
||||
realtime-od:latest
|
||||
```
|
||||
|
||||
Access the mjpeg stream at http://localhost:5000
|
||||
|
||||
## Tips
|
||||
- Lower the framerate of the RTSP feed on the camera to what you want to reduce the CPU usage for capturing the feed
|
||||
- Use SSDLite models
|
||||
|
||||
## Future improvements
|
||||
- MQTT messages when detected objects change
|
||||
- Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
|
||||
- Break incoming frame into multiple smaller images and run detection in parallel for lower latency (rather than input a lower resolution)
|
||||
- Parallel processing to increase FPS
|
||||
- [ ] Look for a subset of object types
|
||||
- [ ] Try and simplify the tensorflow model to just look for the objects we care about
|
||||
- [ ] MQTT messages when detected objects change
|
||||
- [ ] Implement basic motion detection with opencv and only look for objects in the regions with detected motion
|
||||
- [ ] Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
|
||||
- [x] Parallel processing to increase FPS
|
||||
- [ ] Look into GPU accelerated decoding of RTSP stream
|
||||
- [ ] Send video over a socket and use JSMPEG
|
||||
|
||||
## Building Tensorflow from source for CPU optimizations
|
||||
https://www.tensorflow.org/install/source#docker_linux_builds
|
||||
used `tensorflow/tensorflow:1.12.0-devel-py3`
|
||||
|
||||
## Optimizing the graph (cant say I saw much difference in CPU usage)
|
||||
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#optimizing-for-deployment
|
||||
```
|
||||
docker run -it -v ${PWD}:/lab -v ${PWD}/../back_camera_model/models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb:/frozen_inference_graph.pb:ro tensorflow/tensorflow:1.12.0-devel-py3 bash
|
||||
|
||||
bazel build tensorflow/tools/graph_transforms:transform_graph
|
||||
|
||||
bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
|
||||
--in_graph=/frozen_inference_graph.pb \
|
||||
--out_graph=/lab/optimized_inception_graph.pb \
|
||||
--inputs='image_tensor' \
|
||||
--outputs='num_detections,detection_scores,detection_boxes,detection_classes' \
|
||||
--transforms='
|
||||
strip_unused_nodes(type=float, shape="1,300,300,3")
|
||||
remove_nodes(op=Identity, op=CheckNumerics)
|
||||
fold_constants(ignore_errors=true)
|
||||
fold_batch_norms
|
||||
fold_old_batch_norms'
|
||||
```
|
@ -5,6 +5,7 @@ import datetime
|
||||
import ctypes
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import threading
|
||||
from contextlib import closing
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@ -23,15 +24,20 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
||||
# TODO: make dynamic?
|
||||
NUM_CLASSES = 90
|
||||
|
||||
#REGIONS = "600,0,380:600,600,380:600,1200,380"
|
||||
REGIONS = os.getenv('REGIONS')
|
||||
|
||||
DETECTED_OBJECTS = []
|
||||
|
||||
# Loading label map
|
||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
||||
use_display_name=True)
|
||||
category_index = label_map_util.create_category_index(categories)
|
||||
|
||||
def detect_objects(image_np, sess, detection_graph):
|
||||
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||
image_np_expanded = np.expand_dims(image_np, axis=0)
|
||||
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||
|
||||
# Each box represents a part of the image where a particular object was detected.
|
||||
@ -51,25 +57,55 @@ def detect_objects(image_np, sess, detection_graph):
|
||||
# build an array of detected objects
|
||||
objects = []
|
||||
for index, value in enumerate(classes[0]):
|
||||
object_dict = {}
|
||||
if scores[0, index] > 0.5:
|
||||
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
|
||||
scores[0, index]
|
||||
objects.append(object_dict)
|
||||
score = scores[0, index]
|
||||
if score > 0.1:
|
||||
box = boxes[0, index].tolist()
|
||||
box[0] = (box[0] * region_size) + region_y_offset
|
||||
box[1] = (box[1] * region_size) + region_x_offset
|
||||
box[2] = (box[2] * region_size) + region_y_offset
|
||||
box[3] = (box[3] * region_size) + region_x_offset
|
||||
objects += [value, scores[0, index]] + box
|
||||
# only get the first 10 objects
|
||||
if len(objects) == 60:
|
||||
break
|
||||
|
||||
# draw boxes for detected objects on image
|
||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
||||
image_np,
|
||||
np.squeeze(boxes),
|
||||
np.squeeze(classes).astype(np.int32),
|
||||
np.squeeze(scores),
|
||||
category_index,
|
||||
use_normalized_coordinates=True,
|
||||
line_thickness=4)
|
||||
return objects
|
||||
|
||||
return objects, image_np
|
||||
class ObjectParser(threading.Thread):
|
||||
def __init__(self, object_arrays):
|
||||
threading.Thread.__init__(self)
|
||||
self._object_arrays = object_arrays
|
||||
|
||||
def run(self):
|
||||
global DETECTED_OBJECTS
|
||||
while True:
|
||||
detected_objects = []
|
||||
for object_array in self._object_arrays:
|
||||
object_index = 0
|
||||
while(object_index < 60 and object_array[object_index] > 0):
|
||||
object_class = object_array[object_index]
|
||||
detected_objects.append({
|
||||
'name': str(category_index.get(object_class).get('name')),
|
||||
'score': object_array[object_index+1],
|
||||
'ymin': int(object_array[object_index+2]),
|
||||
'xmin': int(object_array[object_index+3]),
|
||||
'ymax': int(object_array[object_index+4]),
|
||||
'xmax': int(object_array[object_index+5])
|
||||
})
|
||||
object_index += 6
|
||||
DETECTED_OBJECTS = detected_objects
|
||||
time.sleep(0.01)
|
||||
|
||||
def main():
|
||||
# Parse selected regions
|
||||
regions = []
|
||||
for region_string in REGIONS.split(':'):
|
||||
region_parts = region_string.split(',')
|
||||
regions.append({
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2])
|
||||
})
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
video = cv2.VideoCapture(RTSP_URL)
|
||||
@ -81,31 +117,45 @@ def main():
|
||||
exit(1)
|
||||
video.release()
|
||||
|
||||
# create shared value for storing the time the frame was captured
|
||||
# note: this must be a double even though the value you are storing
|
||||
# is a float. otherwise it stops updating the value in shared
|
||||
# memory. probably something to do with the size of the memory block
|
||||
shared_frame_time = mp.Value('d', 0.0)
|
||||
shared_memory_objects = []
|
||||
for region in regions:
|
||||
shared_memory_objects.append({
|
||||
# create shared value for storing the time the frame was captured
|
||||
# note: this must be a double even though the value you are storing
|
||||
# is a float. otherwise it stops updating the value in shared
|
||||
# memory. probably something to do with the size of the memory block
|
||||
'frame_time': mp.Value('d', 0.0),
|
||||
# create shared array for storing 10 detected objects
|
||||
'output_array': mp.Array(ctypes.c_double, 6*10)
|
||||
})
|
||||
|
||||
# compute the flattened array length from the array shape
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
# create shared array for passing the image data from capture to detect_objects
|
||||
# create shared array for storing the full frame image data
|
||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create shared array for passing the image data from detect_objects to flask
|
||||
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create a numpy array with the image shape from the shared memory array
|
||||
# this is used by flask to output an mjpeg stream
|
||||
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process.daemon = True
|
||||
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
|
||||
detection_process.daemon = True
|
||||
detection_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||
shared_memory_objects[index]['output_array'],
|
||||
shared_memory_objects[index]['frame_time'], frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset']))
|
||||
detection_process.daemon = True
|
||||
detection_processes.append(detection_process)
|
||||
|
||||
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
||||
object_parser.start()
|
||||
|
||||
capture_process.start()
|
||||
print("capture_process pid ", capture_process.pid)
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
for detection_process in detection_processes:
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -115,20 +165,45 @@ def main():
|
||||
return Response(imagestream(),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
def imagestream():
|
||||
global DETECTED_OBJECTS
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = DETECTED_OBJECTS.copy()
|
||||
# make a copy of the current frame
|
||||
frame = frame_arr.copy()
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in DETECTED_OBJECTS:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
obj['ymax'],
|
||||
obj['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
for region in regions:
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
(255,255,255), 2)
|
||||
# convert back to BGR
|
||||
frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame_bgr)
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', debug=False)
|
||||
|
||||
capture_process.join()
|
||||
detection_process.join()
|
||||
for detection_process in detection_processes:
|
||||
detection_process.join()
|
||||
object_parser.join()
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
@ -136,7 +211,7 @@ def tonumpyarray(mp_arr):
|
||||
|
||||
# fetch the frames as fast a possible, only decoding the frames when the
|
||||
# detection_process has consumed the current frame
|
||||
def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
||||
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@ -153,23 +228,24 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
||||
if ret:
|
||||
# if the detection_process is ready for the next frame decode it
|
||||
# otherwise skip this frame and move onto the next one
|
||||
if shared_frame_time.value == 0.0:
|
||||
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
# copy the frame into the numpy array
|
||||
arr[:] = frame
|
||||
# signal to the detection_process by setting the shared_frame_time
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
# signal to the detection_processes by setting the shared_frame_time
|
||||
for shared_frame_time in shared_frame_times:
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
else:
|
||||
# sleep a little to reduce CPU usage
|
||||
time.sleep(0.01)
|
||||
|
||||
video.release()
|
||||
|
||||
# do the actual object detection
|
||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
|
||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
# shape shared output array into frame so it can be copied into
|
||||
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
||||
|
||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||
detection_graph = tf.Graph()
|
||||
@ -193,6 +269,9 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
||||
time.sleep(1)
|
||||
print("sleeping because no frames have been available in a while")
|
||||
else:
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
# we got a valid frame, so reset the timer
|
||||
@ -202,22 +281,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
||||
# signal that we need a new frame
|
||||
shared_frame_time.value = 0.0
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
# make a copy of the frame
|
||||
frame = arr.copy()
|
||||
# make a copy of the cropped frame
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
frame_time = shared_frame_time.value
|
||||
# signal that the frame has been used so a new one will be ready
|
||||
shared_frame_time.value = 0.0
|
||||
|
||||
# convert to RGB
|
||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
# do the object detection
|
||||
objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
|
||||
# copy the output frame with the bounding boxes to the output array
|
||||
output_arr[:] = frame_overlay
|
||||
if(len(objects) > 0):
|
||||
print(objects)
|
||||
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
||||
# copy the detected objects to the output array, filling the array when needed
|
||||
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||
|
||||
if __name__ == '__main__':
|
||||
mp.freeze_support()
|
||||
|
Loading…
Reference in New Issue
Block a user