mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-04-10 01:15:54 +02:00
commit
6e8409d203
12
Dockerfile
12
Dockerfile
@ -61,17 +61,17 @@ RUN cd /usr/local/src/ \
|
|||||||
RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension
|
RUN jupyter nbextension enable --py --sys-prefix widgetsnbextension
|
||||||
|
|
||||||
# Download & build OpenCV
|
# Download & build OpenCV
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/3.4.1.zip
|
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
||||||
RUN cd /usr/local/src/ \
|
RUN cd /usr/local/src/ \
|
||||||
&& unzip 3.4.1.zip \
|
&& unzip 4.0.1.zip \
|
||||||
&& rm 3.4.1.zip \
|
&& rm 4.0.1.zip \
|
||||||
&& cd /usr/local/src/opencv-3.4.1/ \
|
&& cd /usr/local/src/opencv-4.0.1/ \
|
||||||
&& mkdir build \
|
&& mkdir build \
|
||||||
&& cd /usr/local/src/opencv-3.4.1/build \
|
&& cd /usr/local/src/opencv-4.0.1/build \
|
||||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
||||||
&& make -j4 \
|
&& make -j4 \
|
||||||
&& make install \
|
&& make install \
|
||||||
&& rm -rf /usr/local/src/opencv-3.4.1
|
&& rm -rf /usr/local/src/opencv-4.0.1
|
||||||
|
|
||||||
# Minimize image size
|
# Minimize image size
|
||||||
RUN (apt-get autoremove -y; \
|
RUN (apt-get autoremove -y; \
|
||||||
|
43
README.md
43
README.md
@ -1,10 +1,12 @@
|
|||||||
# Realtime Object Detection for RTSP Cameras
|
# Realtime Object Detection for RTSP Cameras
|
||||||
|
This results in a MJPEG stream with objects identified that has a lower latency than directly viewing the RTSP feed with VLC.
|
||||||
- Prioritizes realtime processing over frames per second. Dropping frames is fine.
|
- Prioritizes realtime processing over frames per second. Dropping frames is fine.
|
||||||
- OpenCV runs in a separate process so it can grab frames as quickly as possible to ensure there aren't old frames in the buffer
|
- OpenCV runs in a separate process so it can grab frames as quickly as possible to ensure there aren't old frames in the buffer
|
||||||
- Object detection with Tensorflow runs in a separate process and ignores frames that are more than 0.5 seconds old
|
- Object detection with Tensorflow runs in a separate process and ignores frames that are more than 0.5 seconds old
|
||||||
- Uses shared memory arrays for handing frames between processes
|
- Uses shared memory arrays for handing frames between processes
|
||||||
- Provides a url for viewing the video feed at a hard coded ~5FPS as an mjpeg stream
|
- Provides a url for viewing the video feed at a hard coded ~5FPS as an mjpeg stream
|
||||||
- Frames are only encoded into mjpeg stream when it is being viewed
|
- Frames are only encoded into mjpeg stream when it is being viewed
|
||||||
|
- A process is created per detection region
|
||||||
|
|
||||||
## Getting Started
|
## Getting Started
|
||||||
Build the container with
|
Build the container with
|
||||||
@ -23,13 +25,46 @@ docker run -it --rm \
|
|||||||
-v <path_to_labelmap.pbtext>:/label_map.pbtext:ro \
|
-v <path_to_labelmap.pbtext>:/label_map.pbtext:ro \
|
||||||
-p 5000:5000 \
|
-p 5000:5000 \
|
||||||
-e RTSP_URL='<rtsp_url>' \
|
-e RTSP_URL='<rtsp_url>' \
|
||||||
|
-e REGIONS='<box_size_1>,<x_offset_1>,<y_offset_1>:<box_size_2>,<x_offset_2>,<y_offset_2>' \
|
||||||
realtime-od:latest
|
realtime-od:latest
|
||||||
```
|
```
|
||||||
|
|
||||||
Access the mjpeg stream at http://localhost:5000
|
Access the mjpeg stream at http://localhost:5000
|
||||||
|
|
||||||
|
## Tips
|
||||||
|
- Lower the framerate of the RTSP feed on the camera to what you want to reduce the CPU usage for capturing the feed
|
||||||
|
- Use SSDLite models
|
||||||
|
|
||||||
## Future improvements
|
## Future improvements
|
||||||
- MQTT messages when detected objects change
|
- [ ] Look for a subset of object types
|
||||||
- Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
|
- [ ] Try and simplify the tensorflow model to just look for the objects we care about
|
||||||
- Break incoming frame into multiple smaller images and run detection in parallel for lower latency (rather than input a lower resolution)
|
- [ ] MQTT messages when detected objects change
|
||||||
- Parallel processing to increase FPS
|
- [ ] Implement basic motion detection with opencv and only look for objects in the regions with detected motion
|
||||||
|
- [ ] Dynamic changes to processing speed, ie. only process 1FPS unless motion detected
|
||||||
|
- [x] Parallel processing to increase FPS
|
||||||
|
- [ ] Look into GPU accelerated decoding of RTSP stream
|
||||||
|
- [ ] Send video over a socket and use JSMPEG
|
||||||
|
|
||||||
|
## Building Tensorflow from source for CPU optimizations
|
||||||
|
https://www.tensorflow.org/install/source#docker_linux_builds
|
||||||
|
used `tensorflow/tensorflow:1.12.0-devel-py3`
|
||||||
|
|
||||||
|
## Optimizing the graph (cant say I saw much difference in CPU usage)
|
||||||
|
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#optimizing-for-deployment
|
||||||
|
```
|
||||||
|
docker run -it -v ${PWD}:/lab -v ${PWD}/../back_camera_model/models/ssd_mobilenet_v2_coco_2018_03_29/frozen_inference_graph.pb:/frozen_inference_graph.pb:ro tensorflow/tensorflow:1.12.0-devel-py3 bash
|
||||||
|
|
||||||
|
bazel build tensorflow/tools/graph_transforms:transform_graph
|
||||||
|
|
||||||
|
bazel-bin/tensorflow/tools/graph_transforms/transform_graph \
|
||||||
|
--in_graph=/frozen_inference_graph.pb \
|
||||||
|
--out_graph=/lab/optimized_inception_graph.pb \
|
||||||
|
--inputs='image_tensor' \
|
||||||
|
--outputs='num_detections,detection_scores,detection_boxes,detection_classes' \
|
||||||
|
--transforms='
|
||||||
|
strip_unused_nodes(type=float, shape="1,300,300,3")
|
||||||
|
remove_nodes(op=Identity, op=CheckNumerics)
|
||||||
|
fold_constants(ignore_errors=true)
|
||||||
|
fold_batch_norms
|
||||||
|
fold_old_batch_norms'
|
||||||
|
```
|
@ -5,6 +5,7 @@ import datetime
|
|||||||
import ctypes
|
import ctypes
|
||||||
import logging
|
import logging
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
|
import threading
|
||||||
from contextlib import closing
|
from contextlib import closing
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
@ -23,15 +24,20 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
|||||||
# TODO: make dynamic?
|
# TODO: make dynamic?
|
||||||
NUM_CLASSES = 90
|
NUM_CLASSES = 90
|
||||||
|
|
||||||
|
#REGIONS = "600,0,380:600,600,380:600,1200,380"
|
||||||
|
REGIONS = os.getenv('REGIONS')
|
||||||
|
|
||||||
|
DETECTED_OBJECTS = []
|
||||||
|
|
||||||
# Loading label map
|
# Loading label map
|
||||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
||||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
||||||
use_display_name=True)
|
use_display_name=True)
|
||||||
category_index = label_map_util.create_category_index(categories)
|
category_index = label_map_util.create_category_index(categories)
|
||||||
|
|
||||||
def detect_objects(image_np, sess, detection_graph):
|
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset):
|
||||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||||
image_np_expanded = np.expand_dims(image_np, axis=0)
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||||
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||||
|
|
||||||
# Each box represents a part of the image where a particular object was detected.
|
# Each box represents a part of the image where a particular object was detected.
|
||||||
@ -51,25 +57,55 @@ def detect_objects(image_np, sess, detection_graph):
|
|||||||
# build an array of detected objects
|
# build an array of detected objects
|
||||||
objects = []
|
objects = []
|
||||||
for index, value in enumerate(classes[0]):
|
for index, value in enumerate(classes[0]):
|
||||||
object_dict = {}
|
score = scores[0, index]
|
||||||
if scores[0, index] > 0.5:
|
if score > 0.1:
|
||||||
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
|
box = boxes[0, index].tolist()
|
||||||
scores[0, index]
|
box[0] = (box[0] * region_size) + region_y_offset
|
||||||
objects.append(object_dict)
|
box[1] = (box[1] * region_size) + region_x_offset
|
||||||
|
box[2] = (box[2] * region_size) + region_y_offset
|
||||||
|
box[3] = (box[3] * region_size) + region_x_offset
|
||||||
|
objects += [value, scores[0, index]] + box
|
||||||
|
# only get the first 10 objects
|
||||||
|
if len(objects) == 60:
|
||||||
|
break
|
||||||
|
|
||||||
# draw boxes for detected objects on image
|
return objects
|
||||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
||||||
image_np,
|
|
||||||
np.squeeze(boxes),
|
|
||||||
np.squeeze(classes).astype(np.int32),
|
|
||||||
np.squeeze(scores),
|
|
||||||
category_index,
|
|
||||||
use_normalized_coordinates=True,
|
|
||||||
line_thickness=4)
|
|
||||||
|
|
||||||
return objects, image_np
|
class ObjectParser(threading.Thread):
|
||||||
|
def __init__(self, object_arrays):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self._object_arrays = object_arrays
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
global DETECTED_OBJECTS
|
||||||
|
while True:
|
||||||
|
detected_objects = []
|
||||||
|
for object_array in self._object_arrays:
|
||||||
|
object_index = 0
|
||||||
|
while(object_index < 60 and object_array[object_index] > 0):
|
||||||
|
object_class = object_array[object_index]
|
||||||
|
detected_objects.append({
|
||||||
|
'name': str(category_index.get(object_class).get('name')),
|
||||||
|
'score': object_array[object_index+1],
|
||||||
|
'ymin': int(object_array[object_index+2]),
|
||||||
|
'xmin': int(object_array[object_index+3]),
|
||||||
|
'ymax': int(object_array[object_index+4]),
|
||||||
|
'xmax': int(object_array[object_index+5])
|
||||||
|
})
|
||||||
|
object_index += 6
|
||||||
|
DETECTED_OBJECTS = detected_objects
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
# Parse selected regions
|
||||||
|
regions = []
|
||||||
|
for region_string in REGIONS.split(':'):
|
||||||
|
region_parts = region_string.split(',')
|
||||||
|
regions.append({
|
||||||
|
'size': int(region_parts[0]),
|
||||||
|
'x_offset': int(region_parts[1]),
|
||||||
|
'y_offset': int(region_parts[2])
|
||||||
|
})
|
||||||
# capture a single frame and check the frame shape so the correct array
|
# capture a single frame and check the frame shape so the correct array
|
||||||
# size can be allocated in memory
|
# size can be allocated in memory
|
||||||
video = cv2.VideoCapture(RTSP_URL)
|
video = cv2.VideoCapture(RTSP_URL)
|
||||||
@ -81,29 +117,43 @@ def main():
|
|||||||
exit(1)
|
exit(1)
|
||||||
video.release()
|
video.release()
|
||||||
|
|
||||||
|
shared_memory_objects = []
|
||||||
|
for region in regions:
|
||||||
|
shared_memory_objects.append({
|
||||||
# create shared value for storing the time the frame was captured
|
# create shared value for storing the time the frame was captured
|
||||||
# note: this must be a double even though the value you are storing
|
# note: this must be a double even though the value you are storing
|
||||||
# is a float. otherwise it stops updating the value in shared
|
# is a float. otherwise it stops updating the value in shared
|
||||||
# memory. probably something to do with the size of the memory block
|
# memory. probably something to do with the size of the memory block
|
||||||
shared_frame_time = mp.Value('d', 0.0)
|
'frame_time': mp.Value('d', 0.0),
|
||||||
|
# create shared array for storing 10 detected objects
|
||||||
|
'output_array': mp.Array(ctypes.c_double, 6*10)
|
||||||
|
})
|
||||||
|
|
||||||
# compute the flattened array length from the array shape
|
# compute the flattened array length from the array shape
|
||||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||||
# create shared array for passing the image data from capture to detect_objects
|
# create shared array for storing the full frame image data
|
||||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||||
# create shared array for passing the image data from detect_objects to flask
|
# shape current frame so it can be treated as an image
|
||||||
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
# create a numpy array with the image shape from the shared memory array
|
|
||||||
# this is used by flask to output an mjpeg stream
|
|
||||||
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
||||||
capture_process.daemon = True
|
capture_process.daemon = True
|
||||||
|
|
||||||
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
|
detection_processes = []
|
||||||
|
for index, region in enumerate(regions):
|
||||||
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||||
|
shared_memory_objects[index]['output_array'],
|
||||||
|
shared_memory_objects[index]['frame_time'], frame_shape,
|
||||||
|
region['size'], region['x_offset'], region['y_offset']))
|
||||||
detection_process.daemon = True
|
detection_process.daemon = True
|
||||||
|
detection_processes.append(detection_process)
|
||||||
|
|
||||||
|
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
||||||
|
object_parser.start()
|
||||||
|
|
||||||
capture_process.start()
|
capture_process.start()
|
||||||
print("capture_process pid ", capture_process.pid)
|
print("capture_process pid ", capture_process.pid)
|
||||||
|
for detection_process in detection_processes:
|
||||||
detection_process.start()
|
detection_process.start()
|
||||||
print("detection_process pid ", detection_process.pid)
|
print("detection_process pid ", detection_process.pid)
|
||||||
|
|
||||||
@ -115,20 +165,45 @@ def main():
|
|||||||
return Response(imagestream(),
|
return Response(imagestream(),
|
||||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||||
def imagestream():
|
def imagestream():
|
||||||
|
global DETECTED_OBJECTS
|
||||||
while True:
|
while True:
|
||||||
# max out at 5 FPS
|
# max out at 5 FPS
|
||||||
time.sleep(0.2)
|
time.sleep(0.2)
|
||||||
|
# make a copy of the current detected objects
|
||||||
|
detected_objects = DETECTED_OBJECTS.copy()
|
||||||
|
# make a copy of the current frame
|
||||||
|
frame = frame_arr.copy()
|
||||||
|
# convert to RGB for drawing
|
||||||
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||||
|
# draw the bounding boxes on the screen
|
||||||
|
for obj in DETECTED_OBJECTS:
|
||||||
|
vis_util.draw_bounding_box_on_image_array(frame,
|
||||||
|
obj['ymin'],
|
||||||
|
obj['xmin'],
|
||||||
|
obj['ymax'],
|
||||||
|
obj['xmax'],
|
||||||
|
color='red',
|
||||||
|
thickness=2,
|
||||||
|
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||||
|
use_normalized_coordinates=False)
|
||||||
|
|
||||||
|
for region in regions:
|
||||||
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||||
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||||
|
(255,255,255), 2)
|
||||||
# convert back to BGR
|
# convert back to BGR
|
||||||
frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||||
# encode the image into a jpg
|
# encode the image into a jpg
|
||||||
ret, jpg = cv2.imencode('.jpg', frame_bgr)
|
ret, jpg = cv2.imencode('.jpg', frame)
|
||||||
yield (b'--frame\r\n'
|
yield (b'--frame\r\n'
|
||||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||||
|
|
||||||
app.run(host='0.0.0.0', debug=False)
|
app.run(host='0.0.0.0', debug=False)
|
||||||
|
|
||||||
capture_process.join()
|
capture_process.join()
|
||||||
|
for detection_process in detection_processes:
|
||||||
detection_process.join()
|
detection_process.join()
|
||||||
|
object_parser.join()
|
||||||
|
|
||||||
# convert shared memory array into numpy array
|
# convert shared memory array into numpy array
|
||||||
def tonumpyarray(mp_arr):
|
def tonumpyarray(mp_arr):
|
||||||
@ -136,7 +211,7 @@ def tonumpyarray(mp_arr):
|
|||||||
|
|
||||||
# fetch the frames as fast a possible, only decoding the frames when the
|
# fetch the frames as fast a possible, only decoding the frames when the
|
||||||
# detection_process has consumed the current frame
|
# detection_process has consumed the current frame
|
||||||
def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||||
# convert shared memory array into numpy and shape into image array
|
# convert shared memory array into numpy and shape into image array
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
@ -153,23 +228,24 @@ def fetch_frames(shared_arr, shared_frame_time, frame_shape):
|
|||||||
if ret:
|
if ret:
|
||||||
# if the detection_process is ready for the next frame decode it
|
# if the detection_process is ready for the next frame decode it
|
||||||
# otherwise skip this frame and move onto the next one
|
# otherwise skip this frame and move onto the next one
|
||||||
if shared_frame_time.value == 0.0:
|
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
||||||
# go ahead and decode the current frame
|
# go ahead and decode the current frame
|
||||||
ret, frame = video.retrieve()
|
ret, frame = video.retrieve()
|
||||||
if ret:
|
if ret:
|
||||||
# copy the frame into the numpy array
|
|
||||||
arr[:] = frame
|
arr[:] = frame
|
||||||
# signal to the detection_process by setting the shared_frame_time
|
# signal to the detection_processes by setting the shared_frame_time
|
||||||
|
for shared_frame_time in shared_frame_times:
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
shared_frame_time.value = frame_time.timestamp()
|
||||||
|
else:
|
||||||
|
# sleep a little to reduce CPU usage
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
video.release()
|
video.release()
|
||||||
|
|
||||||
# do the actual object detection
|
# do the actual object detection
|
||||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||||
# shape shared input array into frame for processing
|
# shape shared input array into frame for processing
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
# shape shared output array into frame so it can be copied into
|
|
||||||
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||||
detection_graph = tf.Graph()
|
detection_graph = tf.Graph()
|
||||||
@ -193,6 +269,9 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
|||||||
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
print("sleeping because no frames have been available in a while")
|
print("sleeping because no frames have been available in a while")
|
||||||
|
else:
|
||||||
|
# rest a little bit to avoid maxing out the CPU
|
||||||
|
time.sleep(0.01)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# we got a valid frame, so reset the timer
|
# we got a valid frame, so reset the timer
|
||||||
@ -202,22 +281,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
|||||||
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
||||||
# signal that we need a new frame
|
# signal that we need a new frame
|
||||||
shared_frame_time.value = 0.0
|
shared_frame_time.value = 0.0
|
||||||
|
# rest a little bit to avoid maxing out the CPU
|
||||||
|
time.sleep(0.01)
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# make a copy of the frame
|
# make a copy of the cropped frame
|
||||||
frame = arr.copy()
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||||
frame_time = shared_frame_time.value
|
frame_time = shared_frame_time.value
|
||||||
# signal that the frame has been used so a new one will be ready
|
# signal that the frame has been used so a new one will be ready
|
||||||
shared_frame_time.value = 0.0
|
shared_frame_time.value = 0.0
|
||||||
|
|
||||||
# convert to RGB
|
# convert to RGB
|
||||||
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||||
# do the object detection
|
# do the object detection
|
||||||
objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
|
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset)
|
||||||
# copy the output frame with the bounding boxes to the output array
|
# copy the detected objects to the output array, filling the array when needed
|
||||||
output_arr[:] = frame_overlay
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||||
if(len(objects) > 0):
|
|
||||||
print(objects)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
mp.freeze_support()
|
mp.freeze_support()
|
||||||
|
Loading…
Reference in New Issue
Block a user