improve watchdog and coral fps tracking

This commit is contained in:
Blake Blackshear 2020-02-21 20:44:53 -06:00
parent 2fc389c3ad
commit 6f6d202c99
4 changed files with 47 additions and 22 deletions

View File

@ -1,5 +1,6 @@
import cv2
import time
import datetime
import queue
import yaml
import threading
@ -53,12 +54,13 @@ WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
class CameraWatchdog(threading.Thread):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue):
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
threading.Thread.__init__(self)
self.camera_processes = camera_processes
self.config = config
self.tflite_process = tflite_process
self.tracked_objects_queue = tracked_objects_queue
self.object_processor = object_processor
def run(self):
time.sleep(10)
@ -68,6 +70,17 @@ class CameraWatchdog(threading.Thread):
for name, camera_process in self.camera_processes.items():
process = camera_process['process']
if (datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30:
print(f"Last frame for {name} is more than 30 seconds old...")
if process.is_alive():
process.terminate()
try:
print("Waiting for process to exit gracefully...")
process.wait(timeout=30)
except sp.TimeoutExpired:
print("Process didnt exit. Force killing...")
process.kill()
process.wait()
if not process.is_alive():
print(f"Process for {name} is not alive. Starting again...")
camera_process['fps'].value = float(self.config[name]['fps'])
@ -131,11 +144,13 @@ def main():
for name, config in CONFIG['cameras'].items():
camera_processes[name] = {
'fps': mp.Value('d', float(config['fps'])),
'skipped_fps': mp.Value('d', 0.0)
'skipped_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'last_frame': datetime.datetime.now().timestamp()
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
camera_processes[name]['fps'], camera_processes[name]['skipped_fps']))
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
camera_process.daemon = True
camera_processes[name]['process'] = camera_process
@ -143,11 +158,11 @@ def main():
camera_process['process'].start()
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue)
camera_watchdog.start()
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
camera_watchdog.start()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@ -161,18 +176,22 @@ def main():
@app.route('/debug/stats')
def stats():
stats = {
'coral': {
'fps': tflite_process.fps.value,
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
}
}
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_processes.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'fps': camera_stats['fps'].value,
'skipped_fps': camera_stats['skipped_fps'].value
'skipped_fps': camera_stats['skipped_fps'].value,
'detection_fps': camera_stats['detection_fps'].value
}
stats['coral'] = {
'fps': total_detection_fps,
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
}
return jsonify(stats)

View File

@ -78,16 +78,13 @@ class EdgeTPUProcess():
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.fps = mp.Value('d', 0.0)
self.avg_inference_speed = mp.Value('d', 0.01)
def run_detector(detect_ready, frame_ready, fps, avg_speed):
def run_detector(detect_ready, frame_ready, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector()
input_frame = sa.attach("frame")
detections = sa.attach("detections")
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
# wait until a frame is ready
@ -98,12 +95,10 @@ class EdgeTPUProcess():
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
fps_tracker.update()
fps.value = fps_tracker.eps()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
self.detect_process.daemon = True
self.detect_process.start()
@ -114,6 +109,8 @@ class RemoteObjectDetector():
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.fps = EventsPerSecond()
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
@ -135,4 +132,5 @@ class RemoteObjectDetector():
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections

View File

@ -33,7 +33,8 @@ class TrackedObjectProcessor(threading.Thread):
self.camera_data = defaultdict(lambda: {
'best_objects': {},
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
'tracked_objects': {}
'tracked_objects': {},
'current_frame_time': datetime.datetime.now().timestamp()
})
def get_best(self, camera, label):
@ -44,6 +45,9 @@ class TrackedObjectProcessor(threading.Thread):
def get_current_frame(self, camera):
return self.camera_data[camera]['current_frame']
def get_current_frame_time(self, camera):
return self.camera_data[camera]['current_frame_time']
def run(self):
while True:
@ -86,6 +90,7 @@ class TrackedObjectProcessor(threading.Thread):
# Set the current frame as ready
###
self.camera_data[camera]['current_frame'] = current_frame
self.camera_data[camera]['current_frame_time'] = frame_time
###
# Maintain the highest scoring recent object and frame for each label

View File

@ -99,7 +99,7 @@ def create_tensor_input(frame, region):
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps):
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
print(f"Starting process for {name}: {os.getpid()}")
# Merge the ffmpeg config with the global config
@ -168,6 +168,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
skipped_fps_tracker = EventsPerSecond()
fps_tracker.start()
skipped_fps_tracker.start()
object_detector.fps.start()
while True:
frame_bytes = ffmpeg_process.stdout.read(frame_size)
@ -181,6 +182,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
fps_tracker.update()
fps.value = fps_tracker.eps()
detection_fps.value = object_detector.fps.eps()
frame_time = datetime.datetime.now().timestamp()
@ -193,6 +195,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
motion_boxes = motion_detector.detect(frame)
# skip object detection if we are below the min_fps
# TODO: its about more than just the FPS. also look at avg wait or min wait
if frame_num > 100 and fps.value < expected_fps-1:
skipped_fps_tracker.update()
skipped_fps.value = skipped_fps_tracker.eps()