mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
improve watchdog and coral fps tracking
This commit is contained in:
parent
2fc389c3ad
commit
6f6d202c99
@ -1,5 +1,6 @@
|
||||
import cv2
|
||||
import time
|
||||
import datetime
|
||||
import queue
|
||||
import yaml
|
||||
import threading
|
||||
@ -53,12 +54,13 @@ WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_processes = camera_processes
|
||||
self.config = config
|
||||
self.tflite_process = tflite_process
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.object_processor = object_processor
|
||||
|
||||
def run(self):
|
||||
time.sleep(10)
|
||||
@ -68,6 +70,17 @@ class CameraWatchdog(threading.Thread):
|
||||
|
||||
for name, camera_process in self.camera_processes.items():
|
||||
process = camera_process['process']
|
||||
if (datetime.datetime.now().timestamp() - self.object_processor.get_current_frame_time(name)) > 30:
|
||||
print(f"Last frame for {name} is more than 30 seconds old...")
|
||||
if process.is_alive():
|
||||
process.terminate()
|
||||
try:
|
||||
print("Waiting for process to exit gracefully...")
|
||||
process.wait(timeout=30)
|
||||
except sp.TimeoutExpired:
|
||||
print("Process didnt exit. Force killing...")
|
||||
process.kill()
|
||||
process.wait()
|
||||
if not process.is_alive():
|
||||
print(f"Process for {name} is not alive. Starting again...")
|
||||
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||
@ -131,11 +144,13 @@ def main():
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
camera_processes[name] = {
|
||||
'fps': mp.Value('d', float(config['fps'])),
|
||||
'skipped_fps': mp.Value('d', 0.0)
|
||||
'skipped_fps': mp.Value('d', 0.0),
|
||||
'detection_fps': mp.Value('d', 0.0),
|
||||
'last_frame': datetime.datetime.now().timestamp()
|
||||
}
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
|
||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps']))
|
||||
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||
camera_process.daemon = True
|
||||
camera_processes[name]['process'] = camera_process
|
||||
|
||||
@ -143,11 +158,11 @@ def main():
|
||||
camera_process['process'].start()
|
||||
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue)
|
||||
camera_watchdog.start()
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
|
||||
camera_watchdog.start()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
@ -161,18 +176,22 @@ def main():
|
||||
|
||||
@app.route('/debug/stats')
|
||||
def stats():
|
||||
stats = {
|
||||
'coral': {
|
||||
'fps': tflite_process.fps.value,
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
|
||||
}
|
||||
}
|
||||
stats = {}
|
||||
|
||||
total_detection_fps = 0
|
||||
|
||||
for name, camera_stats in camera_processes.items():
|
||||
total_detection_fps += camera_stats['detection_fps'].value
|
||||
stats[name] = {
|
||||
'fps': camera_stats['fps'].value,
|
||||
'skipped_fps': camera_stats['skipped_fps'].value
|
||||
'skipped_fps': camera_stats['skipped_fps'].value,
|
||||
'detection_fps': camera_stats['detection_fps'].value
|
||||
}
|
||||
|
||||
stats['coral'] = {
|
||||
'fps': total_detection_fps,
|
||||
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2)
|
||||
}
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
|
@ -78,16 +78,13 @@ class EdgeTPUProcess():
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
self.fps = mp.Value('d', 0.0)
|
||||
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||
|
||||
def run_detector(detect_ready, frame_ready, fps, avg_speed):
|
||||
def run_detector(detect_ready, frame_ready, avg_speed):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
object_detector = ObjectDetector()
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
@ -98,12 +95,10 @@ class EdgeTPUProcess():
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
|
||||
self.detect_process = mp.Process(target=run_detector, args=(self.detect_ready, self.frame_ready, self.avg_inference_speed))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
@ -114,6 +109,8 @@ class RemoteObjectDetector():
|
||||
self.input_frame = sa.attach("frame")
|
||||
self.detections = sa.attach("detections")
|
||||
|
||||
self.fps = EventsPerSecond()
|
||||
|
||||
self.detect_lock = detect_lock
|
||||
self.detect_ready = detect_ready
|
||||
self.frame_ready = frame_ready
|
||||
@ -135,4 +132,5 @@ class RemoteObjectDetector():
|
||||
float(d[1]),
|
||||
(d[2], d[3], d[4], d[5])
|
||||
))
|
||||
self.fps.update()
|
||||
return detections
|
@ -33,7 +33,8 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {}
|
||||
'tracked_objects': {},
|
||||
'current_frame_time': datetime.datetime.now().timestamp()
|
||||
})
|
||||
|
||||
def get_best(self, camera, label):
|
||||
@ -44,6 +45,9 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
|
||||
def get_current_frame(self, camera):
|
||||
return self.camera_data[camera]['current_frame']
|
||||
|
||||
def get_current_frame_time(self, camera):
|
||||
return self.camera_data[camera]['current_frame_time']
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
@ -86,6 +90,7 @@ class TrackedObjectProcessor(threading.Thread):
|
||||
# Set the current frame as ready
|
||||
###
|
||||
self.camera_data[camera]['current_frame'] = current_frame
|
||||
self.camera_data[camera]['current_frame_time'] = frame_time
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
|
@ -99,7 +99,7 @@ def create_tensor_input(frame, region):
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps):
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
@ -168,6 +168,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
skipped_fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
skipped_fps_tracker.start()
|
||||
object_detector.fps.start()
|
||||
while True:
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
|
||||
@ -181,6 +182,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
detection_fps.value = object_detector.fps.eps()
|
||||
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
@ -193,6 +195,7 @@ def track_camera(name, config, ffmpeg_global_config, global_objects_config, dete
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
# skip object detection if we are below the min_fps
|
||||
# TODO: its about more than just the FPS. also look at avg wait or min wait
|
||||
if frame_num > 100 and fps.value < expected_fps-1:
|
||||
skipped_fps_tracker.update()
|
||||
skipped_fps.value = skipped_fps_tracker.eps()
|
||||
|
Loading…
Reference in New Issue
Block a user