Remove rocm detector (#16913)

* Remove rocm detector plugin

* Update docs to recommend using onnx for rocm

* Formatting
This commit is contained in:
Nicolas Mowen 2025-03-03 07:16:14 -07:00 committed by GitHub
parent 0128ec2ba6
commit 71e6e04d77
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 9 additions and 206 deletions

View File

@ -49,7 +49,7 @@ This does not affect using hardware for accelerating other tasks such as [semant
# Officially Supported Detectors # Officially Supported Detectors
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `onnx`, `openvino`, `rknn`, `rocm`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras. Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `onnx`, `openvino`, `rknn`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
## Edge TPU Detector ## Edge TPU Detector
@ -367,7 +367,7 @@ model:
### Setup ### Setup
The `rocm` detector supports running YOLO-NAS models on AMD GPUs. Use a frigate docker image with `-rocm` suffix, for example `ghcr.io/blakeblackshear/frigate:stable-rocm`. Support for AMD GPUs is provided using the [ONNX detector](#ONNX). In order to utilize the AMD GPU for object detection use a frigate docker image with `-rocm` suffix, for example `ghcr.io/blakeblackshear/frigate:stable-rocm`.
### Docker settings for GPU access ### Docker settings for GPU access
@ -446,29 +446,9 @@ $ docker exec -it frigate /bin/bash -c '(unset HSA_OVERRIDE_GFX_VERSION && /opt/
### Supported Models ### Supported Models
There is no default model provided, the following formats are supported: See [ONNX supported models](#supported-models) for supported models, there are some caveats:
- D-FINE models are not supported
#### YOLO-NAS - YOLO-NAS models are known to not run well on integrated GPUs
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
After placing the downloaded onnx model in your config folder, you can use the following configuration:
```yaml
detectors:
rocm:
type: rocm
model:
model_type: yolonas
width: 320 # <--- should match whatever was set in notebook
height: 320 # <--- should match whatever was set in notebook
input_pixel_format: bgr
path: /config/yolo_nas_s.onnx
labelmap_path: /labelmap/coco-80.txt
```
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
## ONNX ## ONNX

View File

@ -28,11 +28,11 @@ Not all model types are supported by all detectors, so it's important to choose
## Supported detector types ## Supported detector types
Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), ONNX (`onnx`), and ROCm (`rocm`) detectors. Currently, Frigate+ models support CPU (`cpu`), Google Coral (`edgetpu`), OpenVino (`openvino`), and ONNX (`onnx`) detectors.
:::warning :::warning
Using Frigate+ models with `onnx` and `rocm` is only available with Frigate 0.15 and later. Using Frigate+ models with `onnx` is only available with Frigate 0.15 and later.
::: :::
@ -42,7 +42,7 @@ Using Frigate+ models with `onnx` and `rocm` is only available with Frigate 0.15
| [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` | | [Coral (all form factors)](/configuration/object_detectors.md#edge-tpu-detector) | `edgetpu` | `mobiledet` |
| [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` | | [Intel](/configuration/object_detectors.md#openvino-detector) | `openvino` | `yolonas` |
| [NVidia GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` | | [NVidia GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#onnx)\* | `onnx` | `yolonas` |
| [AMD ROCm GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#amdrocm-gpu-detector)\* | `rocm` | `yolonas` | | [AMD ROCm GPU](https://deploy-preview-13787--frigate-docs.netlify.app/configuration/object_detectors#amdrocm-gpu-detector)\* | `onnx` | `yolonas` |
_\* Requires Frigate 0.15_ _\* Requires Frigate 0.15_

View File

@ -1,170 +0,0 @@
import ctypes
import logging
import os
import subprocess
import sys
import cv2
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.const import MODEL_CACHE_DIR
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
PixelFormatEnum,
)
logger = logging.getLogger(__name__)
DETECTOR_KEY = "rocm"
def detect_gfx_version():
return subprocess.getoutput(
"unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'"
)
def auto_override_gfx_version():
# If environment variable already in place, do not override
gfx_version = detect_gfx_version()
old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION")
if old_override not in (None, ""):
logger.warning(
f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!"
)
return old_override
mapping = {
"gfx90c": "9.0.0",
"gfx1031": "10.3.0",
"gfx1103": "11.0.0",
}
override = mapping.get(gfx_version)
if override is not None:
logger.warning(
f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}"
)
os.putenv("HSA_OVERRIDE_GFX_VERSION", override)
return override
return ""
class ROCmDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
conserve_cpu: bool = Field(
default=True,
title="Conserve CPU at the expense of latency (and reduced max throughput)",
)
auto_override_gfx: bool = Field(
default=True, title="Automatically detect and override gfx version"
)
class ROCmDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ROCmDetectorConfig):
if detector_config.auto_override_gfx:
auto_override_gfx_version()
try:
sys.path.append("/opt/rocm/lib")
import migraphx
logger.info("AMD/ROCm: loaded migraphx module")
except ModuleNotFoundError:
logger.error("AMD/ROCm: module loading failed, missing ROCm environment?")
raise
if detector_config.conserve_cpu:
logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU")
ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4)
self.h = detector_config.model.height
self.w = detector_config.model.width
self.rocm_model_type = detector_config.model.model_type
self.rocm_model_px = detector_config.model.input_pixel_format
path = detector_config.model.path
mxr_path = os.path.splitext(path)[0] + ".mxr"
if path.endswith(".mxr"):
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
self.model = migraphx.load(mxr_path)
elif os.path.exists(mxr_path):
logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}")
self.model = migraphx.load(mxr_path)
else:
logger.info(f"AMD/ROCm: loading model from {path}")
if (
path.endswith(".tf")
or path.endswith(".tf2")
or path.endswith(".tflite")
):
# untested
self.model = migraphx.parse_tf(path)
else:
self.model = migraphx.parse_onnx(path)
logger.info("AMD/ROCm: compiling the model")
self.model.compile(
migraphx.get_target("gpu"), offload_copy=True, fast_math=True
)
logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}")
os.makedirs(os.path.join(MODEL_CACHE_DIR, "rocm"), exist_ok=True)
migraphx.save(self.model, mxr_path)
logger.info("AMD/ROCm: model loaded")
def detect_raw(self, tensor_input):
model_input_name = self.model.get_parameter_names()[0]
model_input_shape = tuple(
self.model.get_parameter_shapes()[model_input_name].lens()
)
tensor_input = cv2.dnn.blobFromImage(
tensor_input[0],
1.0,
(model_input_shape[3], model_input_shape[2]),
None,
swapRB=self.rocm_model_px == PixelFormatEnum.bgr,
).astype(np.uint8)
detector_result = self.model.run({model_input_name: tensor_input})[0]
addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float))
tensor_output = np.ctypeslib.as_array(
addr, shape=detector_result.get_shape().lens()
)
if self.rocm_model_type == ModelTypeEnum.yolonas:
predictions = tensor_output
detections = np.zeros((20, 6), np.float32)
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.h,
x_min / self.w,
y_max / self.h,
x_max / self.w,
]
return detections
else:
raise Exception(
f"{self.rocm_model_type} is currently not supported for rocm. See the docs for more info on supported models."
)

View File

@ -17,7 +17,6 @@ from frigate.detectors.detector_config import (
InputDTypeEnum, InputDTypeEnum,
InputTensorEnum, InputTensorEnum,
) )
from frigate.detectors.plugins.rocm import DETECTOR_KEY as ROCM_DETECTOR_KEY
from frigate.util.builtin import EventsPerSecond, load_labels from frigate.util.builtin import EventsPerSecond, load_labels
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
from frigate.util.services import listen from frigate.util.services import listen
@ -52,13 +51,7 @@ class LocalObjectDetector(ObjectDetector):
self.labels = load_labels(labels) self.labels = load_labels(labels)
if detector_config: if detector_config:
if detector_config.type == ROCM_DETECTOR_KEY: self.input_transform = tensor_transform(detector_config.model.input_tensor)
# ROCm requires NHWC as input
self.input_transform = None
else:
self.input_transform = tensor_transform(
detector_config.model.input_tensor
)
self.dtype = detector_config.model.input_dtype self.dtype = detector_config.model.input_dtype
else: else: