Improve d-fine model export docs (#20020)

This commit is contained in:
Nicolas Mowen 2025-09-11 05:17:08 -06:00 committed by GitHub
parent 037c4d1cc0
commit 7c7ff49b90
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -978,26 +978,29 @@ Here are some tips for getting different model types
### Downloading D-FINE Model
To export as ONNX:
1. Clone: https://github.com/Peterande/D-FINE and install all dependencies.
2. Select and download a checkpoint from the [readme](https://github.com/Peterande/D-FINE).
3. Modify line 58 of `tools/deployment/export_onnx.py` and change batch size to 1: `data = torch.rand(1, 3, 640, 640)`
4. Run the export, making sure you select the right config, for your checkpoint.
Example:
D-FINE can be exported as ONNX by running the command below. You can copy and paste the whole thing to your terminal and execute, altering `MODEL_SIZE=s` in the first line to `s`, `m`, or `l` size.
```sh
docker build . --build-arg MODEL_SIZE=s --output . -f- <<'EOF'
FROM python:3.11 AS build
RUN apt-get update && apt-get install --no-install-recommends -y libgl1 && rm -rf /var/lib/apt/lists/*
COPY --from=ghcr.io/astral-sh/uv:0.8.0 /uv /bin/
WORKDIR /dfine
RUN git clone https://github.com/Peterande/D-FINE.git .
RUN uv pip install --system -r requirements.txt
RUN uv pip install --system onnx onnxruntime onnxsim
# Create output directory and download checkpoint
RUN mkdir -p output
ARG MODEL_SIZE
RUN wget https://github.com/Peterande/storage/releases/download/dfinev1.0/dfine_${MODEL_SIZE}_obj2coco.pth -O output/dfine_${MODEL_SIZE}_obj2coco.pth
# Modify line 58 of export_onnx.py to change batch size to 1
RUN sed -i '58s/data = torch.rand(.*)/data = torch.rand(1, 3, 640, 640)/' tools/deployment/export_onnx.py
RUN python3 tools/deployment/export_onnx.py -c configs/dfine/objects365/dfine_hgnetv2_${MODEL_SIZE}_obj2coco.yml -r output/dfine_${MODEL_SIZE}_obj2coco.pth
FROM scratch
ARG MODEL_SIZE
COPY --from=build /dfine/output/dfine_${MODEL_SIZE}_obj2coco.onnx /dfine-${MODEL_SIZE}.onnx
EOF
```
python3 tools/deployment/export_onnx.py -c configs/dfine/objects365/dfine_hgnetv2_m_obj2coco.yml -r output/dfine_m_obj2coco.pth
```
:::tip
Model export has only been tested on Linux (or WSL2). Not all dependencies are in `requirements.txt`. Some live in the deployment folder, and some are still missing entirely and must be installed manually.
Make sure you change the batch size to 1 before exporting.
:::
### Download RF-DETR Model