mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-26 13:47:03 +02:00
Fixes (#18117)
* face library i18n fixes * face library i18n fixes * add ability to use ctrl/cmd S to save in the config editor * Use datetime as ID * Update metrics inference speed to start with 0 ms * fix android formatted thumbnail * ensure role is comma separated and stripped correctly * improve face library deletion - add a confirmation dialog - add ability to select all / delete faces in collections * Implement lazy loading for video previews * Force GPU for large embedding model * GPU is required * settings i18n fixes * Don't delete train tab * webpush debugging logs * Fix incorrectly copying zones * copy path data * Ensure that cache dir exists for Frigate+ * face docs update * Add description to upload image step to clarify the image * Clean up --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
This commit is contained in:
parent
52d94231c7
commit
8094dd4075
@ -34,7 +34,7 @@ All of these features run locally on your system.
|
|||||||
|
|
||||||
The `small` model is optimized for efficiency and runs on the CPU, most CPUs should run the model efficiently.
|
The `small` model is optimized for efficiency and runs on the CPU, most CPUs should run the model efficiently.
|
||||||
|
|
||||||
The `large` model is optimized for accuracy, an integrated or discrete GPU is highly recommended. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
The `large` model is optimized for accuracy, an integrated or discrete GPU is required. See the [Hardware Accelerated Enrichments](/configuration/hardware_acceleration_enrichments.md) documentation.
|
||||||
|
|
||||||
## Configuration
|
## Configuration
|
||||||
|
|
||||||
@ -107,17 +107,17 @@ When choosing images to include in the face training set it is recommended to al
|
|||||||
|
|
||||||
### Step 1 - Building a Strong Foundation
|
### Step 1 - Building a Strong Foundation
|
||||||
|
|
||||||
When first enabling face recognition it is important to build a foundation of strong images. It is recommended to start by uploading 1-5 "portrait" photos for each person. It is important that the person's face in the photo is straight-on and not turned which will ensure a good starting point.
|
When first enabling face recognition it is important to build a foundation of strong images. It is recommended to start by uploading 1-5 photos containing just this person's face. It is important that the person's face in the photo is front-facing and not turned, this will ensure a good starting point.
|
||||||
|
|
||||||
Then it is recommended to use the `Face Library` tab in Frigate to select and train images for each person as they are detected. When building a strong foundation it is strongly recommended to only train on images that are straight-on. Ignore images from cameras that recognize faces from an angle.
|
Then it is recommended to use the `Face Library` tab in Frigate to select and train images for each person as they are detected. When building a strong foundation it is strongly recommended to only train on images that are front-facing. Ignore images from cameras that recognize faces from an angle.
|
||||||
|
|
||||||
Aim to strike a balance between the quality of images while also having a range of conditions (day / night, different weather conditions, different times of day, etc.) in order to have diversity in the images used for each person and not have over-fitting.
|
Aim to strike a balance between the quality of images while also having a range of conditions (day / night, different weather conditions, different times of day, etc.) in order to have diversity in the images used for each person and not have over-fitting.
|
||||||
|
|
||||||
Once a person starts to be consistently recognized correctly on images that are straight-on, it is time to move on to the next step.
|
Once a person starts to be consistently recognized correctly on images that are front-facing, it is time to move on to the next step.
|
||||||
|
|
||||||
### Step 2 - Expanding The Dataset
|
### Step 2 - Expanding The Dataset
|
||||||
|
|
||||||
Once straight-on images are performing well, start choosing slightly off-angle images to include for training. It is important to still choose images where enough face detail is visible to recognize someone.
|
Once front-facing images are performing well, start choosing slightly off-angle images to include for training. It is important to still choose images where enough face detail is visible to recognize someone.
|
||||||
|
|
||||||
## FAQ
|
## FAQ
|
||||||
|
|
||||||
@ -156,3 +156,7 @@ Face recognition does not run on the recording stream, this would be suboptimal
|
|||||||
### I get an unknown error when taking a photo directly with my iPhone
|
### I get an unknown error when taking a photo directly with my iPhone
|
||||||
|
|
||||||
By default iOS devices will use HEIC (High Efficiency Image Container) for images, but this format is not supported for uploads. Choosing `large` as the format instead of `original` will use JPG which will work correctly.
|
By default iOS devices will use HEIC (High Efficiency Image Container) for images, but this format is not supported for uploads. Choosing `large` as the format instead of `original` will use JPG which will work correctly.
|
||||||
|
|
||||||
|
## How can I delete the face database and start over?
|
||||||
|
|
||||||
|
Frigate does not store anything in its database related to face recognition. You can simply delete all of your faces through the Frigate UI or remove the contents of the `/media/frigate/clips/faces` directory.
|
||||||
|
@ -268,7 +268,9 @@ def auth(request: Request):
|
|||||||
|
|
||||||
# if comma-separated with "admin", use "admin", else use default role
|
# if comma-separated with "admin", use "admin", else use default role
|
||||||
success_response.headers["remote-role"] = (
|
success_response.headers["remote-role"] = (
|
||||||
"admin" if role and "admin" in role else proxy_config.default_role
|
"admin"
|
||||||
|
if role and "admin" in [r.strip() for r in role.split(",")]
|
||||||
|
else proxy_config.default_role
|
||||||
)
|
)
|
||||||
|
|
||||||
return success_response
|
return success_response
|
||||||
|
@ -1,10 +1,9 @@
|
|||||||
"""Object classification APIs."""
|
"""Object classification APIs."""
|
||||||
|
|
||||||
|
import datetime
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import random
|
|
||||||
import shutil
|
import shutil
|
||||||
import string
|
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
from fastapi import APIRouter, Depends, Request, UploadFile
|
from fastapi import APIRouter, Depends, Request, UploadFile
|
||||||
@ -120,8 +119,7 @@ def train_face(request: Request, name: str, body: dict = None):
|
|||||||
)
|
)
|
||||||
|
|
||||||
sanitized_name = sanitize_filename(name)
|
sanitized_name = sanitize_filename(name)
|
||||||
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
new_name = f"{sanitized_name}-{datetime.datetime.now().timestamp()}.webp"
|
||||||
new_name = f"{sanitized_name}-{rand_id}.webp"
|
|
||||||
new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
|
new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
|
||||||
|
|
||||||
if not os.path.exists(new_file_folder):
|
if not os.path.exists(new_file_folder):
|
||||||
|
@ -909,7 +909,7 @@ def event_thumbnail(
|
|||||||
elif extension == "webp":
|
elif extension == "webp":
|
||||||
quality_params = [int(cv2.IMWRITE_WEBP_QUALITY), 60]
|
quality_params = [int(cv2.IMWRITE_WEBP_QUALITY), 60]
|
||||||
|
|
||||||
_, img = cv2.imencode(f".{img}", thumbnail, quality_params)
|
_, img = cv2.imencode(f".{extension}", thumbnail, quality_params)
|
||||||
thumbnail_bytes = img.tobytes()
|
thumbnail_bytes = img.tobytes()
|
||||||
|
|
||||||
return Response(
|
return Response(
|
||||||
|
@ -303,6 +303,9 @@ class WebPushClient(Communicator): # type: ignore[misc]
|
|||||||
and len(payload["before"]["data"]["zones"])
|
and len(payload["before"]["data"]["zones"])
|
||||||
== len(payload["after"]["data"]["zones"])
|
== len(payload["after"]["data"]["zones"])
|
||||||
):
|
):
|
||||||
|
logger.debug(
|
||||||
|
f"Skipping notification for {camera} - message is an update and important fields don't have an update"
|
||||||
|
)
|
||||||
return
|
return
|
||||||
|
|
||||||
self.last_camera_notification_time[camera] = current_time
|
self.last_camera_notification_time[camera] = current_time
|
||||||
@ -325,6 +328,8 @@ class WebPushClient(Communicator): # type: ignore[misc]
|
|||||||
direct_url = f"/review?id={reviewId}" if state == "end" else f"/#{camera}"
|
direct_url = f"/review?id={reviewId}" if state == "end" else f"/#{camera}"
|
||||||
ttl = 3600 if state == "end" else 0
|
ttl = 3600 if state == "end" else 0
|
||||||
|
|
||||||
|
logger.debug(f"Sending push notification for {camera}, review ID {reviewId}")
|
||||||
|
|
||||||
for user in self.web_pushers:
|
for user in self.web_pushers:
|
||||||
self.send_push_notification(
|
self.send_push_notification(
|
||||||
user=user,
|
user=user,
|
||||||
|
@ -25,7 +25,7 @@ from frigate.comms.event_metadata_updater import (
|
|||||||
from frigate.const import CLIPS_DIR
|
from frigate.const import CLIPS_DIR
|
||||||
from frigate.embeddings.onnx.lpr_embedding import LPR_EMBEDDING_SIZE
|
from frigate.embeddings.onnx.lpr_embedding import LPR_EMBEDDING_SIZE
|
||||||
from frigate.types import TrackedObjectUpdateTypesEnum
|
from frigate.types import TrackedObjectUpdateTypesEnum
|
||||||
from frigate.util.builtin import EventsPerSecond
|
from frigate.util.builtin import EventsPerSecond, InferenceSpeed
|
||||||
from frigate.util.image import area
|
from frigate.util.image import area
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
@ -36,8 +36,10 @@ WRITE_DEBUG_IMAGES = False
|
|||||||
class LicensePlateProcessingMixin:
|
class LicensePlateProcessingMixin:
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
super().__init__(*args, **kwargs)
|
super().__init__(*args, **kwargs)
|
||||||
|
self.plate_rec_speed = InferenceSpeed(self.metrics.alpr_speed)
|
||||||
self.plates_rec_second = EventsPerSecond()
|
self.plates_rec_second = EventsPerSecond()
|
||||||
self.plates_rec_second.start()
|
self.plates_rec_second.start()
|
||||||
|
self.plate_det_speed = InferenceSpeed(self.metrics.yolov9_lpr_speed)
|
||||||
self.plates_det_second = EventsPerSecond()
|
self.plates_det_second = EventsPerSecond()
|
||||||
self.plates_det_second.start()
|
self.plates_det_second.start()
|
||||||
self.event_metadata_publisher = EventMetadataPublisher()
|
self.event_metadata_publisher = EventMetadataPublisher()
|
||||||
@ -1157,22 +1159,6 @@ class LicensePlateProcessingMixin:
|
|||||||
# 5. Return True if previous plate scores higher
|
# 5. Return True if previous plate scores higher
|
||||||
return prev_score > curr_score
|
return prev_score > curr_score
|
||||||
|
|
||||||
def __update_yolov9_metrics(self, duration: float) -> None:
|
|
||||||
"""
|
|
||||||
Update inference metrics.
|
|
||||||
"""
|
|
||||||
self.metrics.yolov9_lpr_speed.value = (
|
|
||||||
self.metrics.yolov9_lpr_speed.value * 9 + duration
|
|
||||||
) / 10
|
|
||||||
|
|
||||||
def __update_lpr_metrics(self, duration: float) -> None:
|
|
||||||
"""
|
|
||||||
Update inference metrics.
|
|
||||||
"""
|
|
||||||
self.metrics.alpr_speed.value = (
|
|
||||||
self.metrics.alpr_speed.value * 9 + duration
|
|
||||||
) / 10
|
|
||||||
|
|
||||||
def _generate_plate_event(self, camera: str, plate: str, plate_score: float) -> str:
|
def _generate_plate_event(self, camera: str, plate: str, plate_score: float) -> str:
|
||||||
"""Generate a unique ID for a plate event based on camera and text."""
|
"""Generate a unique ID for a plate event based on camera and text."""
|
||||||
now = datetime.datetime.now().timestamp()
|
now = datetime.datetime.now().timestamp()
|
||||||
@ -1228,7 +1214,7 @@ class LicensePlateProcessingMixin:
|
|||||||
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
|
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
|
||||||
)
|
)
|
||||||
self.plates_det_second.update()
|
self.plates_det_second.update()
|
||||||
self.__update_yolov9_metrics(
|
self.plate_det_speed.update(
|
||||||
datetime.datetime.now().timestamp() - yolov9_start
|
datetime.datetime.now().timestamp() - yolov9_start
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1319,7 +1305,7 @@ class LicensePlateProcessingMixin:
|
|||||||
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
|
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
|
||||||
)
|
)
|
||||||
self.plates_det_second.update()
|
self.plates_det_second.update()
|
||||||
self.__update_yolov9_metrics(
|
self.plate_det_speed.update(
|
||||||
datetime.datetime.now().timestamp() - yolov9_start
|
datetime.datetime.now().timestamp() - yolov9_start
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1433,7 +1419,7 @@ class LicensePlateProcessingMixin:
|
|||||||
camera, id, license_plate_frame
|
camera, id, license_plate_frame
|
||||||
)
|
)
|
||||||
self.plates_rec_second.update()
|
self.plates_rec_second.update()
|
||||||
self.__update_lpr_metrics(datetime.datetime.now().timestamp() - start)
|
self.plate_rec_speed.update(datetime.datetime.now().timestamp() - start)
|
||||||
|
|
||||||
if license_plates:
|
if license_plates:
|
||||||
for plate, confidence, text_area in zip(license_plates, confidences, areas):
|
for plate, confidence, text_area in zip(license_plates, confidences, areas):
|
||||||
|
@ -5,9 +5,7 @@ import datetime
|
|||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
import random
|
|
||||||
import shutil
|
import shutil
|
||||||
import string
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
@ -27,7 +25,7 @@ from frigate.data_processing.common.face.model import (
|
|||||||
FaceRecognizer,
|
FaceRecognizer,
|
||||||
)
|
)
|
||||||
from frigate.types import TrackedObjectUpdateTypesEnum
|
from frigate.types import TrackedObjectUpdateTypesEnum
|
||||||
from frigate.util.builtin import EventsPerSecond
|
from frigate.util.builtin import EventsPerSecond, InferenceSpeed
|
||||||
from frigate.util.image import area
|
from frigate.util.image import area
|
||||||
|
|
||||||
from ..types import DataProcessorMetrics
|
from ..types import DataProcessorMetrics
|
||||||
@ -58,6 +56,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
self.person_face_history: dict[str, list[tuple[str, float, int]]] = {}
|
self.person_face_history: dict[str, list[tuple[str, float, int]]] = {}
|
||||||
self.recognizer: FaceRecognizer | None = None
|
self.recognizer: FaceRecognizer | None = None
|
||||||
self.faces_per_second = EventsPerSecond()
|
self.faces_per_second = EventsPerSecond()
|
||||||
|
self.inference_speed = InferenceSpeed(self.metrics.face_rec_speed)
|
||||||
|
|
||||||
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
|
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
|
||||||
self.model_files = {
|
self.model_files = {
|
||||||
@ -155,9 +154,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
def __update_metrics(self, duration: float) -> None:
|
def __update_metrics(self, duration: float) -> None:
|
||||||
self.faces_per_second.update()
|
self.faces_per_second.update()
|
||||||
self.metrics.face_rec_speed.value = (
|
self.inference_speed.update(duration)
|
||||||
self.metrics.face_rec_speed.value * 9 + duration
|
|
||||||
) / 10
|
|
||||||
|
|
||||||
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
|
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
|
||||||
"""Look for faces in image."""
|
"""Look for faces in image."""
|
||||||
@ -343,11 +340,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
return {"success": True, "score": score, "face_name": sub_label}
|
return {"success": True, "score": score, "face_name": sub_label}
|
||||||
elif topic == EmbeddingsRequestEnum.register_face.value:
|
elif topic == EmbeddingsRequestEnum.register_face.value:
|
||||||
rand_id = "".join(
|
|
||||||
random.choices(string.ascii_lowercase + string.digits, k=6)
|
|
||||||
)
|
|
||||||
label = request_data["face_name"]
|
label = request_data["face_name"]
|
||||||
id = f"{label}-{rand_id}"
|
|
||||||
|
|
||||||
if request_data.get("cropped"):
|
if request_data.get("cropped"):
|
||||||
thumbnail = request_data["image"]
|
thumbnail = request_data["image"]
|
||||||
@ -376,7 +369,9 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
|
|||||||
|
|
||||||
# write face to library
|
# write face to library
|
||||||
folder = os.path.join(FACE_DIR, label)
|
folder = os.path.join(FACE_DIR, label)
|
||||||
file = os.path.join(folder, f"{id}.webp")
|
file = os.path.join(
|
||||||
|
folder, f"{label}_{datetime.datetime.now().timestamp()}.webp"
|
||||||
|
)
|
||||||
os.makedirs(folder, exist_ok=True)
|
os.makedirs(folder, exist_ok=True)
|
||||||
|
|
||||||
# save face image
|
# save face image
|
||||||
|
@ -7,7 +7,9 @@ from multiprocessing.sharedctypes import Synchronized
|
|||||||
|
|
||||||
class DataProcessorMetrics:
|
class DataProcessorMetrics:
|
||||||
image_embeddings_speed: Synchronized
|
image_embeddings_speed: Synchronized
|
||||||
|
image_embeddings_eps: Synchronized
|
||||||
text_embeddings_speed: Synchronized
|
text_embeddings_speed: Synchronized
|
||||||
|
text_embeddings_eps: Synchronized
|
||||||
face_rec_speed: Synchronized
|
face_rec_speed: Synchronized
|
||||||
face_rec_fps: Synchronized
|
face_rec_fps: Synchronized
|
||||||
alpr_speed: Synchronized
|
alpr_speed: Synchronized
|
||||||
@ -16,15 +18,15 @@ class DataProcessorMetrics:
|
|||||||
yolov9_lpr_pps: Synchronized
|
yolov9_lpr_pps: Synchronized
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.image_embeddings_speed = mp.Value("d", 0.01)
|
self.image_embeddings_speed = mp.Value("d", 0.0)
|
||||||
self.image_embeddings_eps = mp.Value("d", 0.0)
|
self.image_embeddings_eps = mp.Value("d", 0.0)
|
||||||
self.text_embeddings_speed = mp.Value("d", 0.01)
|
self.text_embeddings_speed = mp.Value("d", 0.0)
|
||||||
self.text_embeddings_eps = mp.Value("d", 0.0)
|
self.text_embeddings_eps = mp.Value("d", 0.0)
|
||||||
self.face_rec_speed = mp.Value("d", 0.01)
|
self.face_rec_speed = mp.Value("d", 0.0)
|
||||||
self.face_rec_fps = mp.Value("d", 0.0)
|
self.face_rec_fps = mp.Value("d", 0.0)
|
||||||
self.alpr_speed = mp.Value("d", 0.01)
|
self.alpr_speed = mp.Value("d", 0.0)
|
||||||
self.alpr_pps = mp.Value("d", 0.0)
|
self.alpr_pps = mp.Value("d", 0.0)
|
||||||
self.yolov9_lpr_speed = mp.Value("d", 0.01)
|
self.yolov9_lpr_speed = mp.Value("d", 0.0)
|
||||||
self.yolov9_lpr_pps = mp.Value("d", 0.0)
|
self.yolov9_lpr_pps = mp.Value("d", 0.0)
|
||||||
|
|
||||||
|
|
||||||
|
@ -126,6 +126,9 @@ class ModelConfig(BaseModel):
|
|||||||
if not self.path or not self.path.startswith("plus://"):
|
if not self.path or not self.path.startswith("plus://"):
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# ensure that model cache dir exists
|
||||||
|
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
||||||
|
|
||||||
model_id = self.path[7:]
|
model_id = self.path[7:]
|
||||||
self.path = os.path.join(MODEL_CACHE_DIR, model_id)
|
self.path = os.path.join(MODEL_CACHE_DIR, model_id)
|
||||||
model_info_path = f"{self.path}.json"
|
model_info_path = f"{self.path}.json"
|
||||||
|
@ -235,7 +235,7 @@ class EmbeddingsContext:
|
|||||||
if os.path.isfile(file_path):
|
if os.path.isfile(file_path):
|
||||||
os.unlink(file_path)
|
os.unlink(file_path)
|
||||||
|
|
||||||
if len(os.listdir(folder)) == 0:
|
if face != "train" and len(os.listdir(folder)) == 0:
|
||||||
os.rmdir(folder)
|
os.rmdir(folder)
|
||||||
|
|
||||||
self.requestor.send_data(
|
self.requestor.send_data(
|
||||||
|
@ -21,7 +21,7 @@ from frigate.data_processing.types import DataProcessorMetrics
|
|||||||
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
||||||
from frigate.models import Event
|
from frigate.models import Event
|
||||||
from frigate.types import ModelStatusTypesEnum
|
from frigate.types import ModelStatusTypesEnum
|
||||||
from frigate.util.builtin import EventsPerSecond, serialize
|
from frigate.util.builtin import EventsPerSecond, InferenceSpeed, serialize
|
||||||
from frigate.util.path import get_event_thumbnail_bytes
|
from frigate.util.path import get_event_thumbnail_bytes
|
||||||
|
|
||||||
from .onnx.jina_v1_embedding import JinaV1ImageEmbedding, JinaV1TextEmbedding
|
from .onnx.jina_v1_embedding import JinaV1ImageEmbedding, JinaV1TextEmbedding
|
||||||
@ -75,8 +75,10 @@ class Embeddings:
|
|||||||
self.metrics = metrics
|
self.metrics = metrics
|
||||||
self.requestor = InterProcessRequestor()
|
self.requestor = InterProcessRequestor()
|
||||||
|
|
||||||
|
self.image_inference_speed = InferenceSpeed(self.metrics.image_embeddings_speed)
|
||||||
self.image_eps = EventsPerSecond()
|
self.image_eps = EventsPerSecond()
|
||||||
self.image_eps.start()
|
self.image_eps.start()
|
||||||
|
self.text_inference_speed = InferenceSpeed(self.metrics.text_embeddings_speed)
|
||||||
self.text_eps = EventsPerSecond()
|
self.text_eps = EventsPerSecond()
|
||||||
self.text_eps.start()
|
self.text_eps.start()
|
||||||
|
|
||||||
@ -183,10 +185,7 @@ class Embeddings:
|
|||||||
(event_id, serialize(embedding)),
|
(event_id, serialize(embedding)),
|
||||||
)
|
)
|
||||||
|
|
||||||
duration = datetime.datetime.now().timestamp() - start
|
self.image_inference_speed.update(datetime.datetime.now().timestamp() - start)
|
||||||
self.metrics.image_embeddings_speed.value = (
|
|
||||||
self.metrics.image_embeddings_speed.value * 9 + duration
|
|
||||||
) / 10
|
|
||||||
self.image_eps.update()
|
self.image_eps.update()
|
||||||
|
|
||||||
return embedding
|
return embedding
|
||||||
@ -220,9 +219,7 @@ class Embeddings:
|
|||||||
)
|
)
|
||||||
|
|
||||||
duration = datetime.datetime.now().timestamp() - start
|
duration = datetime.datetime.now().timestamp() - start
|
||||||
self.metrics.text_embeddings_speed.value = (
|
self.text_inference_speed.update(duration / len(ids))
|
||||||
self.metrics.text_embeddings_speed.value * 9 + (duration / len(ids))
|
|
||||||
) / 10
|
|
||||||
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
@ -241,10 +238,7 @@ class Embeddings:
|
|||||||
(event_id, serialize(embedding)),
|
(event_id, serialize(embedding)),
|
||||||
)
|
)
|
||||||
|
|
||||||
duration = datetime.datetime.now().timestamp() - start
|
self.text_inference_speed.update(datetime.datetime.now().timestamp() - start)
|
||||||
self.metrics.text_embeddings_speed.value = (
|
|
||||||
self.metrics.text_embeddings_speed.value * 9 + duration
|
|
||||||
) / 10
|
|
||||||
self.text_eps.update()
|
self.text_eps.update()
|
||||||
|
|
||||||
return embedding
|
return embedding
|
||||||
@ -276,10 +270,7 @@ class Embeddings:
|
|||||||
items,
|
items,
|
||||||
)
|
)
|
||||||
|
|
||||||
duration = datetime.datetime.now().timestamp() - start
|
self.text_inference_speed.update(datetime.datetime.now().timestamp() - start)
|
||||||
self.metrics.text_embeddings_speed.value = (
|
|
||||||
self.metrics.text_embeddings_speed.value * 9 + (duration / len(ids))
|
|
||||||
) / 10
|
|
||||||
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
@ -23,10 +23,7 @@ FACENET_INPUT_SIZE = 160
|
|||||||
|
|
||||||
|
|
||||||
class FaceNetEmbedding(BaseEmbedding):
|
class FaceNetEmbedding(BaseEmbedding):
|
||||||
def __init__(
|
def __init__(self):
|
||||||
self,
|
|
||||||
device: str = "AUTO",
|
|
||||||
):
|
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model_name="facedet",
|
model_name="facedet",
|
||||||
model_file="facenet.tflite",
|
model_file="facenet.tflite",
|
||||||
@ -34,7 +31,6 @@ class FaceNetEmbedding(BaseEmbedding):
|
|||||||
"facenet.tflite": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
|
"facenet.tflite": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.tflite",
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
self.device = device
|
|
||||||
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||||
self.tokenizer = None
|
self.tokenizer = None
|
||||||
self.feature_extractor = None
|
self.feature_extractor = None
|
||||||
@ -113,10 +109,7 @@ class FaceNetEmbedding(BaseEmbedding):
|
|||||||
|
|
||||||
|
|
||||||
class ArcfaceEmbedding(BaseEmbedding):
|
class ArcfaceEmbedding(BaseEmbedding):
|
||||||
def __init__(
|
def __init__(self):
|
||||||
self,
|
|
||||||
device: str = "AUTO",
|
|
||||||
):
|
|
||||||
super().__init__(
|
super().__init__(
|
||||||
model_name="facedet",
|
model_name="facedet",
|
||||||
model_file="arcface.onnx",
|
model_file="arcface.onnx",
|
||||||
@ -124,7 +117,6 @@ class ArcfaceEmbedding(BaseEmbedding):
|
|||||||
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
|
"arcface.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/arcface.onnx",
|
||||||
},
|
},
|
||||||
)
|
)
|
||||||
self.device = device
|
|
||||||
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
||||||
self.tokenizer = None
|
self.tokenizer = None
|
||||||
self.feature_extractor = None
|
self.feature_extractor = None
|
||||||
@ -154,7 +146,7 @@ class ArcfaceEmbedding(BaseEmbedding):
|
|||||||
|
|
||||||
self.runner = ONNXModelRunner(
|
self.runner = ONNXModelRunner(
|
||||||
os.path.join(self.download_path, self.model_file),
|
os.path.join(self.download_path, self.model_file),
|
||||||
self.device,
|
"GPU",
|
||||||
)
|
)
|
||||||
|
|
||||||
def _preprocess_inputs(self, raw_inputs):
|
def _preprocess_inputs(self, raw_inputs):
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
"""Maintain review segments in db."""
|
"""Maintain review segments in db."""
|
||||||
|
|
||||||
|
import copy
|
||||||
import json
|
import json
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
@ -119,21 +120,23 @@ class PendingReviewSegment:
|
|||||||
)
|
)
|
||||||
|
|
||||||
def get_data(self, ended: bool) -> dict:
|
def get_data(self, ended: bool) -> dict:
|
||||||
return {
|
return copy.deepcopy(
|
||||||
ReviewSegment.id.name: self.id,
|
{
|
||||||
ReviewSegment.camera.name: self.camera,
|
ReviewSegment.id.name: self.id,
|
||||||
ReviewSegment.start_time.name: self.start_time,
|
ReviewSegment.camera.name: self.camera,
|
||||||
ReviewSegment.end_time.name: self.last_update if ended else None,
|
ReviewSegment.start_time.name: self.start_time,
|
||||||
ReviewSegment.severity.name: self.severity.value,
|
ReviewSegment.end_time.name: self.last_update if ended else None,
|
||||||
ReviewSegment.thumb_path.name: self.frame_path,
|
ReviewSegment.severity.name: self.severity.value,
|
||||||
ReviewSegment.data.name: {
|
ReviewSegment.thumb_path.name: self.frame_path,
|
||||||
"detections": list(set(self.detections.keys())),
|
ReviewSegment.data.name: {
|
||||||
"objects": list(set(self.detections.values())),
|
"detections": list(set(self.detections.keys())),
|
||||||
"sub_labels": list(self.sub_labels.values()),
|
"objects": list(set(self.detections.values())),
|
||||||
"zones": self.zones,
|
"sub_labels": list(self.sub_labels.values()),
|
||||||
"audio": list(self.audio),
|
"zones": self.zones,
|
||||||
},
|
"audio": list(self.audio),
|
||||||
}.copy()
|
},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ReviewSegmentMaintainer(threading.Thread):
|
class ReviewSegmentMaintainer(threading.Thread):
|
||||||
|
@ -154,7 +154,7 @@ class TrackedObject:
|
|||||||
"attributes": obj_data["attributes"],
|
"attributes": obj_data["attributes"],
|
||||||
"current_estimated_speed": self.current_estimated_speed,
|
"current_estimated_speed": self.current_estimated_speed,
|
||||||
"velocity_angle": self.velocity_angle,
|
"velocity_angle": self.velocity_angle,
|
||||||
"path_data": self.path_data,
|
"path_data": self.path_data.copy(),
|
||||||
"recognized_license_plate": obj_data.get(
|
"recognized_license_plate": obj_data.get(
|
||||||
"recognized_license_plate"
|
"recognized_license_plate"
|
||||||
),
|
),
|
||||||
@ -378,7 +378,7 @@ class TrackedObject:
|
|||||||
"current_estimated_speed": self.current_estimated_speed,
|
"current_estimated_speed": self.current_estimated_speed,
|
||||||
"average_estimated_speed": self.average_estimated_speed,
|
"average_estimated_speed": self.average_estimated_speed,
|
||||||
"velocity_angle": self.velocity_angle,
|
"velocity_angle": self.velocity_angle,
|
||||||
"path_data": self.path_data,
|
"path_data": self.path_data.copy(),
|
||||||
"recognized_license_plate": self.obj_data.get("recognized_license_plate"),
|
"recognized_license_plate": self.obj_data.get("recognized_license_plate"),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -11,6 +11,7 @@ import shlex
|
|||||||
import struct
|
import struct
|
||||||
import urllib.parse
|
import urllib.parse
|
||||||
from collections.abc import Mapping
|
from collections.abc import Mapping
|
||||||
|
from multiprocessing.sharedctypes import Synchronized
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Any, Optional, Tuple, Union
|
from typing import Any, Optional, Tuple, Union
|
||||||
from zoneinfo import ZoneInfoNotFoundError
|
from zoneinfo import ZoneInfoNotFoundError
|
||||||
@ -26,16 +27,16 @@ logger = logging.getLogger(__name__)
|
|||||||
|
|
||||||
|
|
||||||
class EventsPerSecond:
|
class EventsPerSecond:
|
||||||
def __init__(self, max_events=1000, last_n_seconds=10):
|
def __init__(self, max_events=1000, last_n_seconds=10) -> None:
|
||||||
self._start = None
|
self._start = None
|
||||||
self._max_events = max_events
|
self._max_events = max_events
|
||||||
self._last_n_seconds = last_n_seconds
|
self._last_n_seconds = last_n_seconds
|
||||||
self._timestamps = []
|
self._timestamps = []
|
||||||
|
|
||||||
def start(self):
|
def start(self) -> None:
|
||||||
self._start = datetime.datetime.now().timestamp()
|
self._start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
def update(self):
|
def update(self) -> None:
|
||||||
now = datetime.datetime.now().timestamp()
|
now = datetime.datetime.now().timestamp()
|
||||||
if self._start is None:
|
if self._start is None:
|
||||||
self._start = now
|
self._start = now
|
||||||
@ -45,7 +46,7 @@ class EventsPerSecond:
|
|||||||
self._timestamps = self._timestamps[(1 - self._max_events) :]
|
self._timestamps = self._timestamps[(1 - self._max_events) :]
|
||||||
self.expire_timestamps(now)
|
self.expire_timestamps(now)
|
||||||
|
|
||||||
def eps(self):
|
def eps(self) -> float:
|
||||||
now = datetime.datetime.now().timestamp()
|
now = datetime.datetime.now().timestamp()
|
||||||
if self._start is None:
|
if self._start is None:
|
||||||
self._start = now
|
self._start = now
|
||||||
@ -58,12 +59,29 @@ class EventsPerSecond:
|
|||||||
return len(self._timestamps) / seconds
|
return len(self._timestamps) / seconds
|
||||||
|
|
||||||
# remove aged out timestamps
|
# remove aged out timestamps
|
||||||
def expire_timestamps(self, now):
|
def expire_timestamps(self, now: float) -> None:
|
||||||
threshold = now - self._last_n_seconds
|
threshold = now - self._last_n_seconds
|
||||||
while self._timestamps and self._timestamps[0] < threshold:
|
while self._timestamps and self._timestamps[0] < threshold:
|
||||||
del self._timestamps[0]
|
del self._timestamps[0]
|
||||||
|
|
||||||
|
|
||||||
|
class InferenceSpeed:
|
||||||
|
def __init__(self, metric: Synchronized) -> None:
|
||||||
|
self.__metric = metric
|
||||||
|
self.__initialized = False
|
||||||
|
|
||||||
|
def update(self, inference_time: float) -> None:
|
||||||
|
if not self.__initialized:
|
||||||
|
self.__metric.value = inference_time
|
||||||
|
self.__initialized = True
|
||||||
|
return
|
||||||
|
|
||||||
|
self.__metric.value = (self.__metric.value * 9 + inference_time) / 10
|
||||||
|
|
||||||
|
def current(self) -> float:
|
||||||
|
return self.__metric.value
|
||||||
|
|
||||||
|
|
||||||
def deep_merge(dct1: dict, dct2: dict, override=False, merge_lists=False) -> dict:
|
def deep_merge(dct1: dict, dct2: dict, override=False, merge_lists=False) -> dict:
|
||||||
"""
|
"""
|
||||||
:param dct1: First dict to merge
|
:param dct1: First dict to merge
|
||||||
|
@ -8,14 +8,16 @@
|
|||||||
"subLabelScore": "Sub Label Score",
|
"subLabelScore": "Sub Label Score",
|
||||||
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
|
"scoreInfo": "The sub label score is the weighted score for all of the recognized face confidences, so this may differ from the score shown on the snapshot.",
|
||||||
"face": "Face Details",
|
"face": "Face Details",
|
||||||
"faceDesc": "Details for the face and associated object",
|
"faceDesc": "Details of the tracked object that generated this face",
|
||||||
"timestamp": "Timestamp"
|
"timestamp": "Timestamp",
|
||||||
|
"unknown": "Unknown"
|
||||||
},
|
},
|
||||||
"documentTitle": "Face Library - Frigate",
|
"documentTitle": "Face Library - Frigate",
|
||||||
"uploadFaceImage": {
|
"uploadFaceImage": {
|
||||||
"title": "Upload Face Image",
|
"title": "Upload Face Image",
|
||||||
"desc": "Upload an image to scan for faces and include for {{pageToggle}}"
|
"desc": "Upload an image to scan for faces and include for {{pageToggle}}"
|
||||||
},
|
},
|
||||||
|
"collections": "Collections",
|
||||||
"createFaceLibrary": {
|
"createFaceLibrary": {
|
||||||
"title": "Create Collection",
|
"title": "Create Collection",
|
||||||
"desc": "Create a new collection",
|
"desc": "Create a new collection",
|
||||||
@ -25,7 +27,10 @@
|
|||||||
"steps": {
|
"steps": {
|
||||||
"faceName": "Enter Face Name",
|
"faceName": "Enter Face Name",
|
||||||
"uploadFace": "Upload Face Image",
|
"uploadFace": "Upload Face Image",
|
||||||
"nextSteps": "Next Steps"
|
"nextSteps": "Next Steps",
|
||||||
|
"description": {
|
||||||
|
"uploadFace": "Upload an image of {{name}} that shows their face from a front-facing angle. The image does not need to be cropped to just their face."
|
||||||
|
}
|
||||||
},
|
},
|
||||||
"train": {
|
"train": {
|
||||||
"title": "Train",
|
"title": "Train",
|
||||||
@ -38,12 +43,17 @@
|
|||||||
"title": "Delete Name",
|
"title": "Delete Name",
|
||||||
"desc": "Are you sure you want to delete the collection {{name}}? This will permanently delete all associated faces."
|
"desc": "Are you sure you want to delete the collection {{name}}? This will permanently delete all associated faces."
|
||||||
},
|
},
|
||||||
|
"deleteFaceAttempts": {
|
||||||
|
"title": "Delete Faces",
|
||||||
|
"desc_one": "Are you sure you want to delete {{count}} face? This action cannot be undone.",
|
||||||
|
"desc_other": "Are you sure you want to delete {{count}} faces? This action cannot be undone."
|
||||||
|
},
|
||||||
"renameFace": {
|
"renameFace": {
|
||||||
"title": "Rename Face",
|
"title": "Rename Face",
|
||||||
"desc": "Enter a new name for {{name}}"
|
"desc": "Enter a new name for {{name}}"
|
||||||
},
|
},
|
||||||
"button": {
|
"button": {
|
||||||
"deleteFaceAttempts": "Delete Face Attempts",
|
"deleteFaceAttempts": "Delete Faces",
|
||||||
"addFace": "Add Face",
|
"addFace": "Add Face",
|
||||||
"renameFace": "Rename Face",
|
"renameFace": "Rename Face",
|
||||||
"deleteFace": "Delete Face",
|
"deleteFace": "Delete Face",
|
||||||
|
@ -84,6 +84,7 @@
|
|||||||
},
|
},
|
||||||
"classification": {
|
"classification": {
|
||||||
"title": "Classification Settings",
|
"title": "Classification Settings",
|
||||||
|
"unsavedChanges": "Unsaved Classification settings changes",
|
||||||
"birdClassification": {
|
"birdClassification": {
|
||||||
"title": "Bird Classification",
|
"title": "Bird Classification",
|
||||||
"desc": "Bird classification identifies known birds using a quantized Tensorflow model. When a known bird is recognized, its common name will be added as a sub_label. This information is included in the UI, filters, as well as in notifications."
|
"desc": "Bird classification identifies known birds using a quantized Tensorflow model. When a known bird is recognized, its common name will be added as a sub_label. This information is included in the UI, filters, as well as in notifications."
|
||||||
@ -168,11 +169,12 @@
|
|||||||
"notSelectDetections": "All {{detectionsLabels}} objects detected in {{zone}} on {{cameraName}} not categorized as Alerts will be shown as Detections regardless of which zone they are in.",
|
"notSelectDetections": "All {{detectionsLabels}} objects detected in {{zone}} on {{cameraName}} not categorized as Alerts will be shown as Detections regardless of which zone they are in.",
|
||||||
"regardlessOfZoneObjectDetectionsTips": "All {{detectionsLabels}} objects not categorized on {{cameraName}} will be shown as Detections regardless of which zone they are in."
|
"regardlessOfZoneObjectDetectionsTips": "All {{detectionsLabels}} objects not categorized on {{cameraName}} will be shown as Detections regardless of which zone they are in."
|
||||||
},
|
},
|
||||||
|
"unsavedChanges": "Unsaved Review Classification settings for {{camera}}",
|
||||||
"selectAlertsZones": "Select zones for Alerts",
|
"selectAlertsZones": "Select zones for Alerts",
|
||||||
"selectDetectionsZones": "Select zones for Detections",
|
"selectDetectionsZones": "Select zones for Detections",
|
||||||
"limitDetections": "Limit detections to specific zones",
|
"limitDetections": "Limit detections to specific zones",
|
||||||
"toast": {
|
"toast": {
|
||||||
"success": "Review classification configuration has been saved. Restart Frigate to apply changes."
|
"success": "Review Classification configuration has been saved. Restart Frigate to apply changes."
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
@ -338,6 +340,7 @@
|
|||||||
},
|
},
|
||||||
"motionDetectionTuner": {
|
"motionDetectionTuner": {
|
||||||
"title": "Motion Detection Tuner",
|
"title": "Motion Detection Tuner",
|
||||||
|
"unsavedChanges": "Unsaved Motion Tuner changes ({{camera}})",
|
||||||
"desc": {
|
"desc": {
|
||||||
"title": "Frigate uses motion detection as a first line check to see if there is anything happening in the frame worth checking with object detection.",
|
"title": "Frigate uses motion detection as a first line check to see if there is anything happening in the frame worth checking with object detection.",
|
||||||
"documentation": "Read the Motion Tuning Guide"
|
"documentation": "Read the Motion Tuning Guide"
|
||||||
@ -527,6 +530,8 @@
|
|||||||
"registerDevice": "Register This Device",
|
"registerDevice": "Register This Device",
|
||||||
"unregisterDevice": "Unregister This Device",
|
"unregisterDevice": "Unregister This Device",
|
||||||
"sendTestNotification": "Send a test notification",
|
"sendTestNotification": "Send a test notification",
|
||||||
|
"unsavedRegistrations": "Unsaved Notification registrations",
|
||||||
|
"unsavedChanges": "Unsaved Notification changes",
|
||||||
"active": "Notifications Active",
|
"active": "Notifications Active",
|
||||||
"suspended": "Notifications suspended {{time}}",
|
"suspended": "Notifications suspended {{time}}",
|
||||||
"suspendTime": {
|
"suspendTime": {
|
||||||
@ -587,6 +592,7 @@
|
|||||||
"loadingAvailableModels": "Loading available models…",
|
"loadingAvailableModels": "Loading available models…",
|
||||||
"modelSelect": "Your available models on Frigate+ can be selected here. Note that only models compatible with your current detector configuration can be selected."
|
"modelSelect": "Your available models on Frigate+ can be selected here. Note that only models compatible with your current detector configuration can be selected."
|
||||||
},
|
},
|
||||||
|
"unsavedChanges": "Unsaved Frigate+ settings changes",
|
||||||
"restart_required": "Restart required (Frigate+ model changed)",
|
"restart_required": "Restart required (Frigate+ model changed)",
|
||||||
"toast": {
|
"toast": {
|
||||||
"success": "Frigate+ settings have been saved. Restart Frigate to apply changes.",
|
"success": "Frigate+ settings have been saved. Restart Frigate to apply changes.",
|
||||||
|
@ -128,13 +128,18 @@ export default function CreateFaceWizardDialog({
|
|||||||
</TextEntry>
|
</TextEntry>
|
||||||
)}
|
)}
|
||||||
{step == 1 && (
|
{step == 1 && (
|
||||||
<ImageEntry onSave={onUploadImage}>
|
<>
|
||||||
<div className="flex justify-end py-2">
|
<div className="px-8 py-2 text-center text-sm text-secondary-foreground">
|
||||||
<Button variant="select" type="submit">
|
{t("steps.description.uploadFace", { name })}
|
||||||
{t("button.next", { ns: "common" })}
|
|
||||||
</Button>
|
|
||||||
</div>
|
</div>
|
||||||
</ImageEntry>
|
<ImageEntry onSave={onUploadImage}>
|
||||||
|
<div className="flex justify-end py-2">
|
||||||
|
<Button variant="select" type="submit">
|
||||||
|
{t("button.next", { ns: "common" })}
|
||||||
|
</Button>
|
||||||
|
</div>
|
||||||
|
</ImageEntry>
|
||||||
|
</>
|
||||||
)}
|
)}
|
||||||
{step == 2 && (
|
{step == 2 && (
|
||||||
<div className="mt-2">
|
<div className="mt-2">
|
||||||
|
@ -23,6 +23,7 @@ import {
|
|||||||
import { useTranslation } from "react-i18next";
|
import { useTranslation } from "react-i18next";
|
||||||
|
|
||||||
type PreviewPlayerProps = {
|
type PreviewPlayerProps = {
|
||||||
|
previewRef?: (ref: HTMLDivElement | null) => void;
|
||||||
className?: string;
|
className?: string;
|
||||||
camera: string;
|
camera: string;
|
||||||
timeRange: TimeRange;
|
timeRange: TimeRange;
|
||||||
@ -30,16 +31,19 @@ type PreviewPlayerProps = {
|
|||||||
startTime?: number;
|
startTime?: number;
|
||||||
isScrubbing: boolean;
|
isScrubbing: boolean;
|
||||||
forceAspect?: number;
|
forceAspect?: number;
|
||||||
|
isVisible?: boolean;
|
||||||
onControllerReady: (controller: PreviewController) => void;
|
onControllerReady: (controller: PreviewController) => void;
|
||||||
onClick?: () => void;
|
onClick?: () => void;
|
||||||
};
|
};
|
||||||
export default function PreviewPlayer({
|
export default function PreviewPlayer({
|
||||||
|
previewRef,
|
||||||
className,
|
className,
|
||||||
camera,
|
camera,
|
||||||
timeRange,
|
timeRange,
|
||||||
cameraPreviews,
|
cameraPreviews,
|
||||||
startTime,
|
startTime,
|
||||||
isScrubbing,
|
isScrubbing,
|
||||||
|
isVisible = true,
|
||||||
onControllerReady,
|
onControllerReady,
|
||||||
onClick,
|
onClick,
|
||||||
}: PreviewPlayerProps) {
|
}: PreviewPlayerProps) {
|
||||||
@ -54,6 +58,7 @@ export default function PreviewPlayer({
|
|||||||
if (currentPreview) {
|
if (currentPreview) {
|
||||||
return (
|
return (
|
||||||
<PreviewVideoPlayer
|
<PreviewVideoPlayer
|
||||||
|
visibilityRef={previewRef}
|
||||||
className={className}
|
className={className}
|
||||||
camera={camera}
|
camera={camera}
|
||||||
timeRange={timeRange}
|
timeRange={timeRange}
|
||||||
@ -61,6 +66,7 @@ export default function PreviewPlayer({
|
|||||||
initialPreview={currentPreview}
|
initialPreview={currentPreview}
|
||||||
startTime={startTime}
|
startTime={startTime}
|
||||||
isScrubbing={isScrubbing}
|
isScrubbing={isScrubbing}
|
||||||
|
isVisible={isVisible}
|
||||||
currentHourFrame={currentHourFrame}
|
currentHourFrame={currentHourFrame}
|
||||||
onControllerReady={onControllerReady}
|
onControllerReady={onControllerReady}
|
||||||
onClick={onClick}
|
onClick={onClick}
|
||||||
@ -110,6 +116,7 @@ export abstract class PreviewController {
|
|||||||
}
|
}
|
||||||
|
|
||||||
type PreviewVideoPlayerProps = {
|
type PreviewVideoPlayerProps = {
|
||||||
|
visibilityRef?: (ref: HTMLDivElement | null) => void;
|
||||||
className?: string;
|
className?: string;
|
||||||
camera: string;
|
camera: string;
|
||||||
timeRange: TimeRange;
|
timeRange: TimeRange;
|
||||||
@ -117,12 +124,14 @@ type PreviewVideoPlayerProps = {
|
|||||||
initialPreview?: Preview;
|
initialPreview?: Preview;
|
||||||
startTime?: number;
|
startTime?: number;
|
||||||
isScrubbing: boolean;
|
isScrubbing: boolean;
|
||||||
|
isVisible: boolean;
|
||||||
currentHourFrame?: string;
|
currentHourFrame?: string;
|
||||||
onControllerReady: (controller: PreviewVideoController) => void;
|
onControllerReady: (controller: PreviewVideoController) => void;
|
||||||
onClick?: () => void;
|
onClick?: () => void;
|
||||||
setCurrentHourFrame: (src: string | undefined) => void;
|
setCurrentHourFrame: (src: string | undefined) => void;
|
||||||
};
|
};
|
||||||
function PreviewVideoPlayer({
|
function PreviewVideoPlayer({
|
||||||
|
visibilityRef,
|
||||||
className,
|
className,
|
||||||
camera,
|
camera,
|
||||||
timeRange,
|
timeRange,
|
||||||
@ -130,6 +139,7 @@ function PreviewVideoPlayer({
|
|||||||
initialPreview,
|
initialPreview,
|
||||||
startTime,
|
startTime,
|
||||||
isScrubbing,
|
isScrubbing,
|
||||||
|
isVisible,
|
||||||
currentHourFrame,
|
currentHourFrame,
|
||||||
onControllerReady,
|
onControllerReady,
|
||||||
onClick,
|
onClick,
|
||||||
@ -267,11 +277,13 @@ function PreviewVideoPlayer({
|
|||||||
|
|
||||||
return (
|
return (
|
||||||
<div
|
<div
|
||||||
|
ref={visibilityRef}
|
||||||
className={cn(
|
className={cn(
|
||||||
"relative flex w-full justify-center overflow-hidden rounded-lg bg-black md:rounded-2xl",
|
"relative flex w-full justify-center overflow-hidden rounded-lg bg-black md:rounded-2xl",
|
||||||
onClick && "cursor-pointer",
|
onClick && "cursor-pointer",
|
||||||
className,
|
className,
|
||||||
)}
|
)}
|
||||||
|
data-camera={camera}
|
||||||
onClick={onClick}
|
onClick={onClick}
|
||||||
>
|
>
|
||||||
<img
|
<img
|
||||||
@ -286,45 +298,48 @@ function PreviewVideoPlayer({
|
|||||||
previewRef.current?.load();
|
previewRef.current?.load();
|
||||||
}}
|
}}
|
||||||
/>
|
/>
|
||||||
<video
|
{isVisible && (
|
||||||
ref={previewRef}
|
<video
|
||||||
className={`absolute size-full ${currentHourFrame ? "invisible" : "visible"}`}
|
ref={previewRef}
|
||||||
preload="auto"
|
className={`absolute size-full ${currentHourFrame ? "invisible" : "visible"}`}
|
||||||
autoPlay
|
preload="auto"
|
||||||
playsInline
|
autoPlay
|
||||||
muted
|
playsInline
|
||||||
disableRemotePlayback
|
muted
|
||||||
onSeeked={onPreviewSeeked}
|
disableRemotePlayback
|
||||||
onLoadedData={() => {
|
onSeeked={onPreviewSeeked}
|
||||||
if (firstLoad) {
|
onLoadedData={() => {
|
||||||
setFirstLoad(false);
|
if (firstLoad) {
|
||||||
}
|
setFirstLoad(false);
|
||||||
|
|
||||||
if (controller) {
|
|
||||||
controller.previewReady();
|
|
||||||
} else {
|
|
||||||
previewRef.current?.pause();
|
|
||||||
}
|
|
||||||
|
|
||||||
if (previewRef.current) {
|
|
||||||
setVideoSize([
|
|
||||||
previewRef.current.videoWidth,
|
|
||||||
previewRef.current.videoHeight,
|
|
||||||
]);
|
|
||||||
|
|
||||||
if (startTime && currentPreview) {
|
|
||||||
previewRef.current.currentTime = startTime - currentPreview.start;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}}
|
if (controller) {
|
||||||
>
|
controller.previewReady();
|
||||||
{currentPreview != undefined && (
|
} else {
|
||||||
<source
|
previewRef.current?.pause();
|
||||||
src={`${baseUrl}${currentPreview.src.substring(1)}`}
|
}
|
||||||
type={currentPreview.type}
|
|
||||||
/>
|
if (previewRef.current) {
|
||||||
)}
|
setVideoSize([
|
||||||
</video>
|
previewRef.current.videoWidth,
|
||||||
|
previewRef.current.videoHeight,
|
||||||
|
]);
|
||||||
|
|
||||||
|
if (startTime && currentPreview) {
|
||||||
|
previewRef.current.currentTime =
|
||||||
|
startTime - currentPreview.start;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
{currentPreview != undefined && (
|
||||||
|
<source
|
||||||
|
src={`${baseUrl}${currentPreview.src.substring(1)}`}
|
||||||
|
type={currentPreview.type}
|
||||||
|
/>
|
||||||
|
)}
|
||||||
|
</video>
|
||||||
|
)}
|
||||||
{cameraPreviews && !currentPreview && (
|
{cameraPreviews && !currentPreview && (
|
||||||
<div className="absolute inset-0 flex items-center justify-center rounded-lg bg-background_alt text-primary dark:bg-black md:rounded-2xl">
|
<div className="absolute inset-0 flex items-center justify-center rounded-lg bg-background_alt text-primary dark:bg-black md:rounded-2xl">
|
||||||
{t("noPreviewFoundFor", { camera: camera.replaceAll("_", " ") })}
|
{t("noPreviewFoundFor", { camera: camera.replaceAll("_", " ") })}
|
||||||
|
@ -143,6 +143,12 @@ function ConfigEditor() {
|
|||||||
scrollBeyondLastLine: false,
|
scrollBeyondLastLine: false,
|
||||||
theme: (systemTheme || theme) == "dark" ? "vs-dark" : "vs-light",
|
theme: (systemTheme || theme) == "dark" ? "vs-dark" : "vs-light",
|
||||||
});
|
});
|
||||||
|
editorRef.current?.addCommand(
|
||||||
|
monaco.KeyMod.CtrlCmd | monaco.KeyCode.KeyS,
|
||||||
|
() => {
|
||||||
|
onHandleSaveConfig("saveonly");
|
||||||
|
},
|
||||||
|
);
|
||||||
} else if (editorRef.current) {
|
} else if (editorRef.current) {
|
||||||
editorRef.current.setModel(modelRef.current);
|
editorRef.current.setModel(modelRef.current);
|
||||||
}
|
}
|
||||||
@ -158,7 +164,7 @@ function ConfigEditor() {
|
|||||||
}
|
}
|
||||||
schemaConfiguredRef.current = false;
|
schemaConfiguredRef.current = false;
|
||||||
};
|
};
|
||||||
}, [config, apiHost, systemTheme, theme]);
|
}, [config, apiHost, systemTheme, theme, onHandleSaveConfig]);
|
||||||
|
|
||||||
// monitoring state
|
// monitoring state
|
||||||
|
|
||||||
|
@ -6,7 +6,17 @@ import CreateFaceWizardDialog from "@/components/overlay/detail/FaceCreateWizard
|
|||||||
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
|
import TextEntryDialog from "@/components/overlay/dialog/TextEntryDialog";
|
||||||
import UploadImageDialog from "@/components/overlay/dialog/UploadImageDialog";
|
import UploadImageDialog from "@/components/overlay/dialog/UploadImageDialog";
|
||||||
import FaceSelectionDialog from "@/components/overlay/FaceSelectionDialog";
|
import FaceSelectionDialog from "@/components/overlay/FaceSelectionDialog";
|
||||||
import { Button } from "@/components/ui/button";
|
import { Button, buttonVariants } from "@/components/ui/button";
|
||||||
|
import {
|
||||||
|
AlertDialog,
|
||||||
|
AlertDialogAction,
|
||||||
|
AlertDialogCancel,
|
||||||
|
AlertDialogContent,
|
||||||
|
AlertDialogDescription,
|
||||||
|
AlertDialogFooter,
|
||||||
|
AlertDialogHeader,
|
||||||
|
AlertDialogTitle,
|
||||||
|
} from "@/components/ui/alert-dialog";
|
||||||
import {
|
import {
|
||||||
Dialog,
|
Dialog,
|
||||||
DialogContent,
|
DialogContent,
|
||||||
@ -44,7 +54,7 @@ import { TooltipPortal } from "@radix-ui/react-tooltip";
|
|||||||
import axios from "axios";
|
import axios from "axios";
|
||||||
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
|
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
|
||||||
import { isDesktop, isMobile } from "react-device-detect";
|
import { isDesktop, isMobile } from "react-device-detect";
|
||||||
import { useTranslation } from "react-i18next";
|
import { Trans, useTranslation } from "react-i18next";
|
||||||
import {
|
import {
|
||||||
LuFolderCheck,
|
LuFolderCheck,
|
||||||
LuImagePlus,
|
LuImagePlus,
|
||||||
@ -165,6 +175,11 @@ export default function FaceLibrary() {
|
|||||||
[selectedFaces, setSelectedFaces],
|
[selectedFaces, setSelectedFaces],
|
||||||
);
|
);
|
||||||
|
|
||||||
|
const [deleteDialogOpen, setDeleteDialogOpen] = useState<{
|
||||||
|
name: string;
|
||||||
|
ids: string[];
|
||||||
|
} | null>(null);
|
||||||
|
|
||||||
const onDelete = useCallback(
|
const onDelete = useCallback(
|
||||||
(name: string, ids: string[], isName: boolean = false) => {
|
(name: string, ids: string[], isName: boolean = false) => {
|
||||||
axios
|
axios
|
||||||
@ -191,7 +206,7 @@ export default function FaceLibrary() {
|
|||||||
|
|
||||||
if (faceImages.length == 1) {
|
if (faceImages.length == 1) {
|
||||||
// face has been deleted
|
// face has been deleted
|
||||||
setPageToggle("");
|
setPageToggle("train");
|
||||||
}
|
}
|
||||||
|
|
||||||
refreshFaces();
|
refreshFaces();
|
||||||
@ -244,29 +259,32 @@ export default function FaceLibrary() {
|
|||||||
|
|
||||||
// keyboard
|
// keyboard
|
||||||
|
|
||||||
useKeyboardListener(
|
useKeyboardListener(["a", "Escape"], (key, modifiers) => {
|
||||||
page === "train" ? ["a", "Escape"] : [],
|
if (modifiers.repeat || !modifiers.down) {
|
||||||
(key, modifiers) => {
|
return;
|
||||||
if (modifiers.repeat || !modifiers.down) {
|
}
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
switch (key) {
|
switch (key) {
|
||||||
case "a":
|
case "a":
|
||||||
if (modifiers.ctrl) {
|
if (modifiers.ctrl) {
|
||||||
if (selectedFaces.length) {
|
if (selectedFaces.length) {
|
||||||
setSelectedFaces([]);
|
setSelectedFaces([]);
|
||||||
} else {
|
} else {
|
||||||
setSelectedFaces([...trainImages]);
|
setSelectedFaces([
|
||||||
}
|
...(pageToggle === "train" ? trainImages : faceImages),
|
||||||
|
]);
|
||||||
}
|
}
|
||||||
break;
|
}
|
||||||
case "Escape":
|
break;
|
||||||
setSelectedFaces([]);
|
case "Escape":
|
||||||
break;
|
setSelectedFaces([]);
|
||||||
}
|
break;
|
||||||
},
|
}
|
||||||
);
|
});
|
||||||
|
|
||||||
|
useEffect(() => {
|
||||||
|
setSelectedFaces([]);
|
||||||
|
}, [pageToggle]);
|
||||||
|
|
||||||
if (!config) {
|
if (!config) {
|
||||||
return <ActivityIndicator />;
|
return <ActivityIndicator />;
|
||||||
@ -276,6 +294,41 @@ export default function FaceLibrary() {
|
|||||||
<div className="flex size-full flex-col p-2">
|
<div className="flex size-full flex-col p-2">
|
||||||
<Toaster />
|
<Toaster />
|
||||||
|
|
||||||
|
<AlertDialog
|
||||||
|
open={!!deleteDialogOpen}
|
||||||
|
onOpenChange={() => setDeleteDialogOpen(null)}
|
||||||
|
>
|
||||||
|
<AlertDialogContent>
|
||||||
|
<AlertDialogHeader>
|
||||||
|
<AlertDialogTitle>{t("deleteFaceAttempts.title")}</AlertDialogTitle>
|
||||||
|
</AlertDialogHeader>
|
||||||
|
<AlertDialogDescription>
|
||||||
|
<Trans
|
||||||
|
ns="views/faceLibrary"
|
||||||
|
values={{ count: deleteDialogOpen?.ids.length }}
|
||||||
|
>
|
||||||
|
deleteFaceAttempts.desc
|
||||||
|
</Trans>
|
||||||
|
</AlertDialogDescription>
|
||||||
|
<AlertDialogFooter>
|
||||||
|
<AlertDialogCancel>
|
||||||
|
{t("button.cancel", { ns: "common" })}
|
||||||
|
</AlertDialogCancel>
|
||||||
|
<AlertDialogAction
|
||||||
|
className={buttonVariants({ variant: "destructive" })}
|
||||||
|
onClick={() => {
|
||||||
|
if (deleteDialogOpen) {
|
||||||
|
onDelete(deleteDialogOpen.name, deleteDialogOpen.ids);
|
||||||
|
setDeleteDialogOpen(null);
|
||||||
|
}
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
{t("button.delete", { ns: "common" })}
|
||||||
|
</AlertDialogAction>
|
||||||
|
</AlertDialogFooter>
|
||||||
|
</AlertDialogContent>
|
||||||
|
</AlertDialog>
|
||||||
|
|
||||||
<UploadImageDialog
|
<UploadImageDialog
|
||||||
open={upload}
|
open={upload}
|
||||||
title={t("uploadFaceImage.title")}
|
title={t("uploadFaceImage.title")}
|
||||||
@ -314,7 +367,9 @@ export default function FaceLibrary() {
|
|||||||
</div>
|
</div>
|
||||||
<Button
|
<Button
|
||||||
className="flex gap-2"
|
className="flex gap-2"
|
||||||
onClick={() => onDelete("train", selectedFaces)}
|
onClick={() =>
|
||||||
|
setDeleteDialogOpen({ name: pageToggle, ids: selectedFaces })
|
||||||
|
}
|
||||||
>
|
>
|
||||||
<LuTrash2 className="size-7 rounded-md p-1 text-secondary-foreground" />
|
<LuTrash2 className="size-7 rounded-md p-1 text-secondary-foreground" />
|
||||||
{isDesktop && t("button.deleteFaceAttempts")}
|
{isDesktop && t("button.deleteFaceAttempts")}
|
||||||
@ -335,7 +390,13 @@ export default function FaceLibrary() {
|
|||||||
</div>
|
</div>
|
||||||
)}
|
)}
|
||||||
</div>
|
</div>
|
||||||
{pageToggle &&
|
{pageToggle && faceImages.length === 0 && pageToggle !== "train" ? (
|
||||||
|
<div className="absolute left-1/2 top-1/2 flex -translate-x-1/2 -translate-y-1/2 flex-col items-center justify-center text-center">
|
||||||
|
<LuFolderCheck className="size-16" />
|
||||||
|
No faces available
|
||||||
|
</div>
|
||||||
|
) : (
|
||||||
|
pageToggle &&
|
||||||
(pageToggle == "train" ? (
|
(pageToggle == "train" ? (
|
||||||
<TrainingGrid
|
<TrainingGrid
|
||||||
config={config}
|
config={config}
|
||||||
@ -349,9 +410,12 @@ export default function FaceLibrary() {
|
|||||||
<FaceGrid
|
<FaceGrid
|
||||||
faceImages={faceImages}
|
faceImages={faceImages}
|
||||||
pageToggle={pageToggle}
|
pageToggle={pageToggle}
|
||||||
|
selectedFaces={selectedFaces}
|
||||||
|
onClickFaces={onClickFaces}
|
||||||
onDelete={onDelete}
|
onDelete={onDelete}
|
||||||
/>
|
/>
|
||||||
))}
|
))
|
||||||
|
)}
|
||||||
</div>
|
</div>
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
@ -443,7 +507,7 @@ function LibrarySelector({
|
|||||||
<DropdownMenu>
|
<DropdownMenu>
|
||||||
<DropdownMenuTrigger asChild>
|
<DropdownMenuTrigger asChild>
|
||||||
<Button className="flex justify-between smart-capitalize">
|
<Button className="flex justify-between smart-capitalize">
|
||||||
{pageToggle || t("selectFace")}
|
{pageToggle == "train" ? t("train.title") : pageToggle}
|
||||||
<span className="ml-2 text-primary-variant">
|
<span className="ml-2 text-primary-variant">
|
||||||
({(pageToggle && faceData?.[pageToggle]?.length) || 0})
|
({(pageToggle && faceData?.[pageToggle]?.length) || 0})
|
||||||
</span>
|
</span>
|
||||||
@ -467,7 +531,7 @@ function LibrarySelector({
|
|||||||
<>
|
<>
|
||||||
<DropdownMenuSeparator />
|
<DropdownMenuSeparator />
|
||||||
<div className="mb-1 ml-1.5 text-xs text-secondary-foreground">
|
<div className="mb-1 ml-1.5 text-xs text-secondary-foreground">
|
||||||
Collections
|
{t("collections")}
|
||||||
</div>
|
</div>
|
||||||
</>
|
</>
|
||||||
)}
|
)}
|
||||||
@ -644,7 +708,7 @@ function TrainingGrid({
|
|||||||
<div className="flex flex-col gap-1.5">
|
<div className="flex flex-col gap-1.5">
|
||||||
<div className="text-sm text-primary/40">{t("details.person")}</div>
|
<div className="text-sm text-primary/40">{t("details.person")}</div>
|
||||||
<div className="text-sm smart-capitalize">
|
<div className="text-sm smart-capitalize">
|
||||||
{selectedEvent?.sub_label ?? "Unknown"}
|
{selectedEvent?.sub_label ?? t("details.unknown")}
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
{selectedEvent?.data.sub_label_score && (
|
{selectedEvent?.data.sub_label_score && (
|
||||||
@ -793,7 +857,7 @@ function FaceAttemptGroup({
|
|||||||
Person
|
Person
|
||||||
{event?.sub_label
|
{event?.sub_label
|
||||||
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
? `: ${event.sub_label} (${Math.round((event.data.sub_label_score || 0) * 100)}%)`
|
||||||
: ": Unknown"}
|
: ": " + t("details.unknown")}
|
||||||
</div>
|
</div>
|
||||||
{event && (
|
{event && (
|
||||||
<Tooltip>
|
<Tooltip>
|
||||||
@ -968,7 +1032,9 @@ function FaceAttempt({
|
|||||||
<div className="select-none p-2">
|
<div className="select-none p-2">
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||||
<div className="smart-capitalize">{data.name}</div>
|
<div className="smart-capitalize">
|
||||||
|
{data.name == "unknown" ? t("details.unknown") : data.name}
|
||||||
|
</div>
|
||||||
<div
|
<div
|
||||||
className={cn(
|
className={cn(
|
||||||
"",
|
"",
|
||||||
@ -1007,16 +1073,36 @@ function FaceAttempt({
|
|||||||
type FaceGridProps = {
|
type FaceGridProps = {
|
||||||
faceImages: string[];
|
faceImages: string[];
|
||||||
pageToggle: string;
|
pageToggle: string;
|
||||||
|
selectedFaces: string[];
|
||||||
|
onClickFaces: (images: string[], ctrl: boolean) => void;
|
||||||
onDelete: (name: string, ids: string[]) => void;
|
onDelete: (name: string, ids: string[]) => void;
|
||||||
};
|
};
|
||||||
function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) {
|
function FaceGrid({
|
||||||
const sortedFaces = useMemo(() => faceImages.sort().reverse(), [faceImages]);
|
faceImages,
|
||||||
|
pageToggle,
|
||||||
|
selectedFaces,
|
||||||
|
onClickFaces,
|
||||||
|
onDelete,
|
||||||
|
}: FaceGridProps) {
|
||||||
|
const sortedFaces = useMemo(
|
||||||
|
() => (faceImages || []).sort().reverse(),
|
||||||
|
[faceImages],
|
||||||
|
);
|
||||||
|
|
||||||
|
if (sortedFaces.length === 0) {
|
||||||
|
return (
|
||||||
|
<div className="absolute left-1/2 top-1/2 flex -translate-x-1/2 -translate-y-1/2 flex-col items-center justify-center text-center">
|
||||||
|
<LuFolderCheck className="size-16" />
|
||||||
|
No faces available
|
||||||
|
</div>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div
|
<div
|
||||||
className={cn(
|
className={cn(
|
||||||
"scrollbar-container gap-2 overflow-y-scroll",
|
"scrollbar-container gap-2 overflow-y-scroll p-1",
|
||||||
isDesktop ? "flex flex-wrap" : "grid grid-cols-2",
|
isDesktop ? "flex flex-wrap" : "grid grid-cols-2 md:grid-cols-4",
|
||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
{sortedFaces.map((image: string) => (
|
{sortedFaces.map((image: string) => (
|
||||||
@ -1024,6 +1110,8 @@ function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) {
|
|||||||
key={image}
|
key={image}
|
||||||
name={pageToggle}
|
name={pageToggle}
|
||||||
image={image}
|
image={image}
|
||||||
|
selected={selectedFaces.includes(image)}
|
||||||
|
onClickFaces={onClickFaces}
|
||||||
onDelete={onDelete}
|
onDelete={onDelete}
|
||||||
/>
|
/>
|
||||||
))}
|
))}
|
||||||
@ -1034,22 +1122,44 @@ function FaceGrid({ faceImages, pageToggle, onDelete }: FaceGridProps) {
|
|||||||
type FaceImageProps = {
|
type FaceImageProps = {
|
||||||
name: string;
|
name: string;
|
||||||
image: string;
|
image: string;
|
||||||
|
selected: boolean;
|
||||||
|
onClickFaces: (images: string[], ctrl: boolean) => void;
|
||||||
onDelete: (name: string, ids: string[]) => void;
|
onDelete: (name: string, ids: string[]) => void;
|
||||||
};
|
};
|
||||||
function FaceImage({ name, image, onDelete }: FaceImageProps) {
|
function FaceImage({
|
||||||
|
name,
|
||||||
|
image,
|
||||||
|
selected,
|
||||||
|
onClickFaces,
|
||||||
|
onDelete,
|
||||||
|
}: FaceImageProps) {
|
||||||
const { t } = useTranslation(["views/faceLibrary"]);
|
const { t } = useTranslation(["views/faceLibrary"]);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div className="relative flex flex-col rounded-lg">
|
<div
|
||||||
|
className={cn(
|
||||||
|
"flex cursor-pointer flex-col gap-2 rounded-lg bg-card outline outline-[3px]",
|
||||||
|
selected
|
||||||
|
? "shadow-selected outline-selected"
|
||||||
|
: "outline-transparent duration-500",
|
||||||
|
)}
|
||||||
|
onClick={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
onClickFaces([image], e.ctrlKey || e.metaKey);
|
||||||
|
}}
|
||||||
|
>
|
||||||
<div
|
<div
|
||||||
className={cn(
|
className={cn(
|
||||||
"w-full overflow-hidden rounded-t-lg *:text-card-foreground",
|
"w-full overflow-hidden p-2 *:text-card-foreground",
|
||||||
isMobile && "flex justify-center",
|
isMobile && "flex justify-center",
|
||||||
)}
|
)}
|
||||||
>
|
>
|
||||||
<img className="h-40" src={`${baseUrl}clips/faces/${name}/${image}`} />
|
<img
|
||||||
|
className="h-40 rounded-lg"
|
||||||
|
src={`${baseUrl}clips/faces/${name}/${image}`}
|
||||||
|
/>
|
||||||
</div>
|
</div>
|
||||||
<div className="rounded-b-lg bg-card p-2">
|
<div className="rounded-b-lg bg-card p-3">
|
||||||
<div className="flex w-full flex-row items-center justify-between gap-2">
|
<div className="flex w-full flex-row items-center justify-between gap-2">
|
||||||
<div className="flex flex-col items-start text-xs text-primary-variant">
|
<div className="flex flex-col items-start text-xs text-primary-variant">
|
||||||
<div className="smart-capitalize">{name}</div>
|
<div className="smart-capitalize">{name}</div>
|
||||||
@ -1059,7 +1169,10 @@ function FaceImage({ name, image, onDelete }: FaceImageProps) {
|
|||||||
<TooltipTrigger>
|
<TooltipTrigger>
|
||||||
<LuTrash2
|
<LuTrash2
|
||||||
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
className="size-5 cursor-pointer text-primary-variant hover:text-primary"
|
||||||
onClick={() => onDelete(name, [image])}
|
onClick={(e) => {
|
||||||
|
e.stopPropagation();
|
||||||
|
onDelete(name, [image]);
|
||||||
|
}}
|
||||||
/>
|
/>
|
||||||
</TooltipTrigger>
|
</TooltipTrigger>
|
||||||
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
<TooltipContent>{t("button.deleteFaceAttempts")}</TooltipContent>
|
||||||
|
@ -385,6 +385,55 @@ export function RecordingView({
|
|||||||
// eslint-disable-next-line react-hooks/exhaustive-deps
|
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||||
}, [previewRowRef.current?.scrollWidth, previewRowRef.current?.scrollHeight]);
|
}, [previewRowRef.current?.scrollWidth, previewRowRef.current?.scrollHeight]);
|
||||||
|
|
||||||
|
// visibility listener for lazy loading
|
||||||
|
|
||||||
|
const [visiblePreviews, setVisiblePreviews] = useState<string[]>([]);
|
||||||
|
const visiblePreviewObserver = useRef<IntersectionObserver | null>(null);
|
||||||
|
useEffect(() => {
|
||||||
|
const visibleCameras = new Set<string>();
|
||||||
|
visiblePreviewObserver.current = new IntersectionObserver(
|
||||||
|
(entries) => {
|
||||||
|
entries.forEach((entry) => {
|
||||||
|
const camera = (entry.target as HTMLElement).dataset.camera;
|
||||||
|
|
||||||
|
if (!camera) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (entry.isIntersecting) {
|
||||||
|
visibleCameras.add(camera);
|
||||||
|
} else {
|
||||||
|
visibleCameras.delete(camera);
|
||||||
|
}
|
||||||
|
|
||||||
|
setVisiblePreviews([...visibleCameras]);
|
||||||
|
});
|
||||||
|
},
|
||||||
|
{ threshold: 0.1 },
|
||||||
|
);
|
||||||
|
|
||||||
|
return () => {
|
||||||
|
visiblePreviewObserver.current?.disconnect();
|
||||||
|
};
|
||||||
|
}, []);
|
||||||
|
|
||||||
|
const previewRef = useCallback(
|
||||||
|
(node: HTMLElement | null) => {
|
||||||
|
if (!visiblePreviewObserver.current) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
try {
|
||||||
|
if (node) visiblePreviewObserver.current.observe(node);
|
||||||
|
} catch (e) {
|
||||||
|
// no op
|
||||||
|
}
|
||||||
|
},
|
||||||
|
// we need to listen on the value of the ref
|
||||||
|
// eslint-disable-next-line react-hooks/exhaustive-deps
|
||||||
|
[visiblePreviewObserver.current],
|
||||||
|
);
|
||||||
|
|
||||||
return (
|
return (
|
||||||
<div ref={contentRef} className="flex size-full flex-col pt-2">
|
<div ref={contentRef} className="flex size-full flex-col pt-2">
|
||||||
<Toaster closeButton={true} />
|
<Toaster closeButton={true} />
|
||||||
@ -631,12 +680,14 @@ export function RecordingView({
|
|||||||
}}
|
}}
|
||||||
>
|
>
|
||||||
<PreviewPlayer
|
<PreviewPlayer
|
||||||
|
previewRef={previewRef}
|
||||||
className="size-full"
|
className="size-full"
|
||||||
camera={cam}
|
camera={cam}
|
||||||
timeRange={currentTimeRange}
|
timeRange={currentTimeRange}
|
||||||
cameraPreviews={allPreviews ?? []}
|
cameraPreviews={allPreviews ?? []}
|
||||||
startTime={startTime}
|
startTime={startTime}
|
||||||
isScrubbing={scrubbing}
|
isScrubbing={scrubbing}
|
||||||
|
isVisible={visiblePreviews.includes(cam)}
|
||||||
onControllerReady={(controller) => {
|
onControllerReady={(controller) => {
|
||||||
previewRefs.current[cam] = controller;
|
previewRefs.current[cam] = controller;
|
||||||
controller.scrubToTimestamp(startTime);
|
controller.scrubToTimestamp(startTime);
|
||||||
|
@ -230,7 +230,9 @@ export default function CameraSettingsView({
|
|||||||
if (changedValue) {
|
if (changedValue) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"camera_settings",
|
"camera_settings",
|
||||||
`Unsaved review classification settings for ${capitalizeFirstLetter(selectedCamera)}`,
|
t("camera.reviewClassification.unsavedChanges", {
|
||||||
|
camera: selectedCamera,
|
||||||
|
}),
|
||||||
undefined,
|
undefined,
|
||||||
`review_classification_settings_${selectedCamera}`,
|
`review_classification_settings_${selectedCamera}`,
|
||||||
);
|
);
|
||||||
|
@ -220,7 +220,7 @@ export default function ClassificationSettingsView({
|
|||||||
if (changedValue) {
|
if (changedValue) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"search_settings",
|
"search_settings",
|
||||||
`Unsaved Classification settings changes`,
|
t("classification.unsavedChanges"),
|
||||||
undefined,
|
undefined,
|
||||||
"search_settings",
|
"search_settings",
|
||||||
);
|
);
|
||||||
|
@ -176,7 +176,7 @@ export default function FrigatePlusSettingsView({
|
|||||||
if (changedValue) {
|
if (changedValue) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"plus_settings",
|
"plus_settings",
|
||||||
`Unsaved Frigate+ settings changes`,
|
t("frigatePlus.unsavedChanges"),
|
||||||
undefined,
|
undefined,
|
||||||
"plus_settings",
|
"plus_settings",
|
||||||
);
|
);
|
||||||
|
@ -167,7 +167,7 @@ export default function MotionTunerView({
|
|||||||
if (changedValue) {
|
if (changedValue) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"motion_tuner",
|
"motion_tuner",
|
||||||
`Unsaved motion tuner changes (${selectedCamera})`,
|
t("motionDetectionTuner.unsavedChanges", { camera: selectedCamera }),
|
||||||
undefined,
|
undefined,
|
||||||
`motion_tuner_${selectedCamera}`,
|
`motion_tuner_${selectedCamera}`,
|
||||||
);
|
);
|
||||||
|
@ -105,7 +105,7 @@ export default function NotificationView({
|
|||||||
if (changedValue) {
|
if (changedValue) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"notification_settings",
|
"notification_settings",
|
||||||
`Unsaved notification settings`,
|
t("notification.unsavedChanges"),
|
||||||
undefined,
|
undefined,
|
||||||
`notification_settings`,
|
`notification_settings`,
|
||||||
);
|
);
|
||||||
@ -128,7 +128,7 @@ export default function NotificationView({
|
|||||||
if (registration) {
|
if (registration) {
|
||||||
addMessage(
|
addMessage(
|
||||||
"notification_settings",
|
"notification_settings",
|
||||||
"Unsaved Notification Registrations",
|
t("notification.unsavedRegistrations"),
|
||||||
undefined,
|
undefined,
|
||||||
"registration",
|
"registration",
|
||||||
);
|
);
|
||||||
|
Loading…
Reference in New Issue
Block a user