mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	detectors/edgetpu_tfl: add support for yolov8
This commit is contained in:
		
							parent
							
								
									cd508980bb
								
							
						
					
					
						commit
						80ae30e30e
					
				@ -6,6 +6,7 @@ from typing_extensions import Literal
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
from frigate.detectors.detection_api import DetectionApi
 | 
					from frigate.detectors.detection_api import DetectionApi
 | 
				
			||||||
from frigate.detectors.detector_config import BaseDetectorConfig
 | 
					from frigate.detectors.detector_config import BaseDetectorConfig
 | 
				
			||||||
 | 
					import frigate.detectors.yolo_utils as yolo_utils
 | 
				
			||||||
 | 
					
 | 
				
			||||||
try:
 | 
					try:
 | 
				
			||||||
    from tflite_runtime.interpreter import Interpreter, load_delegate
 | 
					    from tflite_runtime.interpreter import Interpreter, load_delegate
 | 
				
			||||||
@ -54,11 +55,25 @@ class EdgeTpuTfl(DetectionApi):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        self.tensor_input_details = self.interpreter.get_input_details()
 | 
					        self.tensor_input_details = self.interpreter.get_input_details()
 | 
				
			||||||
        self.tensor_output_details = self.interpreter.get_output_details()
 | 
					        self.tensor_output_details = self.interpreter.get_output_details()
 | 
				
			||||||
 | 
					        self.model_type = detector_config.model.model_type
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def detect_raw(self, tensor_input):
 | 
					    def detect_raw(self, tensor_input):
 | 
				
			||||||
 | 
					        if self.model_type == 'yolov8':
 | 
				
			||||||
 | 
					            scale, zero_point = self.tensor_input_details[0]['quantization']
 | 
				
			||||||
 | 
					            tensor_input = ((tensor_input - scale * zero_point * 255) * (1.0 / (scale * 255))).astype(self.tensor_input_details[0]['dtype'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
 | 
					        self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
 | 
				
			||||||
        self.interpreter.invoke()
 | 
					        self.interpreter.invoke()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if self.model_type == 'yolov8':
 | 
				
			||||||
 | 
					            scale, zero_point = self.tensor_output_details[0]['quantization']
 | 
				
			||||||
 | 
					            tensor_output = self.interpreter.get_tensor(self.tensor_output_details[0]['index'])
 | 
				
			||||||
 | 
					            tensor_output = (tensor_output.astype(np.float32) - zero_point) * scale
 | 
				
			||||||
 | 
					            model_input_shape = self.tensor_input_details[0]['shape']
 | 
				
			||||||
 | 
					            tensor_output[:, [0, 2]] *= model_input_shape[2]
 | 
				
			||||||
 | 
					            tensor_output[:, [1, 3]] *= model_input_shape[1]
 | 
				
			||||||
 | 
					            return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | 
					        boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
 | 
				
			||||||
        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | 
					        class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
 | 
				
			||||||
        scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
 | 
					        scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user