mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
detectors/edgetpu_tfl: add support for yolov8
This commit is contained in:
parent
cd508980bb
commit
80ae30e30e
@ -6,6 +6,7 @@ from typing_extensions import Literal
|
|||||||
|
|
||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig
|
from frigate.detectors.detector_config import BaseDetectorConfig
|
||||||
|
import frigate.detectors.yolo_utils as yolo_utils
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||||
@ -54,11 +55,25 @@ class EdgeTpuTfl(DetectionApi):
|
|||||||
|
|
||||||
self.tensor_input_details = self.interpreter.get_input_details()
|
self.tensor_input_details = self.interpreter.get_input_details()
|
||||||
self.tensor_output_details = self.interpreter.get_output_details()
|
self.tensor_output_details = self.interpreter.get_output_details()
|
||||||
|
self.model_type = detector_config.model.model_type
|
||||||
|
|
||||||
def detect_raw(self, tensor_input):
|
def detect_raw(self, tensor_input):
|
||||||
|
if self.model_type == 'yolov8':
|
||||||
|
scale, zero_point = self.tensor_input_details[0]['quantization']
|
||||||
|
tensor_input = ((tensor_input - scale * zero_point * 255) * (1.0 / (scale * 255))).astype(self.tensor_input_details[0]['dtype'])
|
||||||
|
|
||||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
||||||
self.interpreter.invoke()
|
self.interpreter.invoke()
|
||||||
|
|
||||||
|
if self.model_type == 'yolov8':
|
||||||
|
scale, zero_point = self.tensor_output_details[0]['quantization']
|
||||||
|
tensor_output = self.interpreter.get_tensor(self.tensor_output_details[0]['index'])
|
||||||
|
tensor_output = (tensor_output.astype(np.float32) - zero_point) * scale
|
||||||
|
model_input_shape = self.tensor_input_details[0]['shape']
|
||||||
|
tensor_output[:, [0, 2]] *= model_input_shape[2]
|
||||||
|
tensor_output[:, [1, 3]] *= model_input_shape[1]
|
||||||
|
return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)
|
||||||
|
|
||||||
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
||||||
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
||||||
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
||||||
|
Loading…
Reference in New Issue
Block a user