mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
check plasma store and consolidate frame drawing
This commit is contained in:
parent
569e07949f
commit
80b9652f7a
@ -80,6 +80,11 @@ def main():
|
|||||||
# start plasma store
|
# start plasma store
|
||||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
|
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
|
||||||
|
time.sleep(1)
|
||||||
|
rc = plasma_process.poll()
|
||||||
|
if rc is not None:
|
||||||
|
raise RuntimeError("plasma_store exited unexpectedly with "
|
||||||
|
"code %d" % (rc,))
|
||||||
|
|
||||||
##
|
##
|
||||||
# Setup config defaults for cameras
|
# Setup config defaults for cameras
|
||||||
@ -95,6 +100,7 @@ def main():
|
|||||||
# Start the shared tflite process
|
# Start the shared tflite process
|
||||||
tflite_process = EdgeTPUProcess(MODEL_PATH)
|
tflite_process = EdgeTPUProcess(MODEL_PATH)
|
||||||
|
|
||||||
|
# start the camera processes
|
||||||
camera_processes = []
|
camera_processes = []
|
||||||
camera_stats_values = {}
|
camera_stats_values = {}
|
||||||
for name, config in CONFIG['cameras'].items():
|
for name, config in CONFIG['cameras'].items():
|
||||||
@ -167,9 +173,13 @@ def main():
|
|||||||
while True:
|
while True:
|
||||||
# max out at 1 FPS
|
# max out at 1 FPS
|
||||||
time.sleep(1)
|
time.sleep(1)
|
||||||
frame = object_processor.current_frame_with_objects(camera_name)
|
frame = object_processor.get_current_frame(camera_name)
|
||||||
|
if frame is None:
|
||||||
|
frame = np.zeros((720,1280,3), np.uint8)
|
||||||
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||||
|
ret, jpg = cv2.imencode('.jpg', frame)
|
||||||
yield (b'--frame\r\n'
|
yield (b'--frame\r\n'
|
||||||
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||||
|
|
||||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||||
|
|
||||||
|
@ -41,50 +41,8 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def get_frame(self, config, camera, obj):
|
def get_current_frame(self, camera):
|
||||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{obj['frame_time']}"))
|
return self.camera_data[camera]['current_frame']
|
||||||
object_id_bytes = object_id_hash.digest()
|
|
||||||
object_id = plasma.ObjectID(object_id_bytes)
|
|
||||||
best_frame = self.plasma_client.get(object_id)
|
|
||||||
box = obj['box']
|
|
||||||
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}")
|
|
||||||
# print a timestamp
|
|
||||||
if config['snapshots']['show_timestamp']:
|
|
||||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
|
||||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
||||||
return best_frame
|
|
||||||
|
|
||||||
def current_frame_with_objects(self, camera):
|
|
||||||
frame_time = self.camera_data[camera]['current_frame']
|
|
||||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
|
||||||
object_id_bytes = object_id_hash.digest()
|
|
||||||
object_id = plasma.ObjectID(object_id_bytes)
|
|
||||||
current_frame = self.plasma_client.get(object_id)
|
|
||||||
|
|
||||||
tracked_objects = copy.deepcopy(self.camera_data[camera]['tracked_objects'])
|
|
||||||
|
|
||||||
# draw the bounding boxes on the screen
|
|
||||||
for obj in tracked_objects.values():
|
|
||||||
thickness = 2
|
|
||||||
color = COLOR_MAP[obj['label']]
|
|
||||||
|
|
||||||
if obj['frame_time'] != frame_time:
|
|
||||||
thickness = 1
|
|
||||||
color = (255,0,0)
|
|
||||||
|
|
||||||
box = obj['box']
|
|
||||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
|
||||||
|
|
||||||
# # print fps
|
|
||||||
# cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
||||||
|
|
||||||
# convert to BGR
|
|
||||||
frame = cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
# encode the image into a jpg
|
|
||||||
ret, jpg = cv2.imencode('.jpg', frame)
|
|
||||||
|
|
||||||
return jpg.tobytes()
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while True:
|
while True:
|
||||||
@ -94,21 +52,56 @@ class TrackedObjectProcessor(threading.Thread):
|
|||||||
best_objects = self.camera_data[camera]['best_objects']
|
best_objects = self.camera_data[camera]['best_objects']
|
||||||
current_object_status = self.camera_data[camera]['object_status']
|
current_object_status = self.camera_data[camera]['object_status']
|
||||||
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
||||||
self.camera_data[camera]['current_frame'] = frame_time
|
|
||||||
|
###
|
||||||
|
# Draw tracked objects on the frame
|
||||||
|
###
|
||||||
|
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
||||||
|
object_id_bytes = object_id_hash.digest()
|
||||||
|
object_id = plasma.ObjectID(object_id_bytes)
|
||||||
|
current_frame = self.plasma_client.get(object_id)
|
||||||
|
|
||||||
|
# draw the bounding boxes on the frame
|
||||||
|
for obj in tracked_objects.values():
|
||||||
|
thickness = 2
|
||||||
|
color = COLOR_MAP[obj['label']]
|
||||||
|
|
||||||
|
if obj['frame_time'] != frame_time:
|
||||||
|
thickness = 1
|
||||||
|
color = (255,0,0)
|
||||||
|
|
||||||
|
# draw the bounding boxes on the frame
|
||||||
|
box = obj['box']
|
||||||
|
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||||
|
# draw the regions on the frame
|
||||||
|
region = obj['region']
|
||||||
|
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||||
|
|
||||||
|
if config['snapshots']['show_timestamp']:
|
||||||
|
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||||
|
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||||
|
|
||||||
|
###
|
||||||
|
# Set the current frame as ready
|
||||||
|
###
|
||||||
|
self.camera_data[camera]['current_frame'] = current_frame
|
||||||
|
|
||||||
###
|
###
|
||||||
# Maintain the highest scoring recent object and frame for each label
|
# Maintain the highest scoring recent object and frame for each label
|
||||||
###
|
###
|
||||||
for obj in tracked_objects.values():
|
for obj in tracked_objects.values():
|
||||||
|
# if the object wasn't seen on the current frame, skip it
|
||||||
|
if obj['frame_time'] != frame_time:
|
||||||
|
continue
|
||||||
if obj['label'] in best_objects:
|
if obj['label'] in best_objects:
|
||||||
now = datetime.datetime.now().timestamp()
|
now = datetime.datetime.now().timestamp()
|
||||||
# if the object is a higher score than the current best score
|
# if the object is a higher score than the current best score
|
||||||
# or the current object is more than 1 minute old, use the new object
|
# or the current object is more than 1 minute old, use the new object
|
||||||
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
||||||
obj['frame'] = self.get_frame(config, camera, obj)
|
obj['frame'] = np.copy(current_frame)
|
||||||
best_objects[obj['label']] = obj
|
best_objects[obj['label']] = obj
|
||||||
else:
|
else:
|
||||||
obj['frame'] = self.get_frame(config, camera, obj)
|
obj['frame'] = np.copy(current_frame)
|
||||||
best_objects[obj['label']] = obj
|
best_objects[obj['label']] = obj
|
||||||
|
|
||||||
###
|
###
|
||||||
|
@ -9,7 +9,7 @@ import numpy as np
|
|||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from scipy.spatial import distance as dist
|
from scipy.spatial import distance as dist
|
||||||
from frigate.util import draw_box_with_label, LABELS, calculate_region
|
from frigate.util import draw_box_with_label, calculate_region
|
||||||
|
|
||||||
# class ObjectCleaner(threading.Thread):
|
# class ObjectCleaner(threading.Thread):
|
||||||
# def __init__(self, camera):
|
# def __init__(self, camera):
|
||||||
|
@ -16,7 +16,7 @@ import copy
|
|||||||
import itertools
|
import itertools
|
||||||
import json
|
import json
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
from frigate.util import tonumpyarray, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
||||||
# from frigate.object_detection import RegionPrepper, RegionRequester
|
# from frigate.object_detection import RegionPrepper, RegionRequester
|
||||||
from frigate.objects import ObjectTracker
|
from frigate.objects import ObjectTracker
|
||||||
# from frigate.mqtt import MqttObjectPublisher
|
# from frigate.mqtt import MqttObjectPublisher
|
||||||
|
Loading…
Reference in New Issue
Block a user