mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	check plasma store and consolidate frame drawing
This commit is contained in:
		
							parent
							
								
									569e07949f
								
							
						
					
					
						commit
						80b9652f7a
					
				| @ -80,6 +80,11 @@ def main(): | |||||||
|     # start plasma store |     # start plasma store | ||||||
|     plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma'] |     plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma'] | ||||||
|     plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL) |     plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL) | ||||||
|  |     time.sleep(1) | ||||||
|  |     rc = plasma_process.poll() | ||||||
|  |     if rc is not None: | ||||||
|  |         raise RuntimeError("plasma_store exited unexpectedly with " | ||||||
|  |                             "code %d" % (rc,)) | ||||||
| 
 | 
 | ||||||
|     ## |     ## | ||||||
|     # Setup config defaults for cameras |     # Setup config defaults for cameras | ||||||
| @ -95,6 +100,7 @@ def main(): | |||||||
|     # Start the shared tflite process |     # Start the shared tflite process | ||||||
|     tflite_process = EdgeTPUProcess(MODEL_PATH) |     tflite_process = EdgeTPUProcess(MODEL_PATH) | ||||||
| 
 | 
 | ||||||
|  |     # start the camera processes | ||||||
|     camera_processes = [] |     camera_processes = [] | ||||||
|     camera_stats_values = {} |     camera_stats_values = {} | ||||||
|     for name, config in CONFIG['cameras'].items(): |     for name, config in CONFIG['cameras'].items(): | ||||||
| @ -167,9 +173,13 @@ def main(): | |||||||
|         while True: |         while True: | ||||||
|             # max out at 1 FPS |             # max out at 1 FPS | ||||||
|             time.sleep(1) |             time.sleep(1) | ||||||
|             frame = object_processor.current_frame_with_objects(camera_name) |             frame = object_processor.get_current_frame(camera_name) | ||||||
|  |             if frame is None: | ||||||
|  |                 frame = np.zeros((720,1280,3), np.uint8) | ||||||
|  |             frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | ||||||
|  |             ret, jpg = cv2.imencode('.jpg', frame) | ||||||
|             yield (b'--frame\r\n' |             yield (b'--frame\r\n' | ||||||
|                 b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n') |                 b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') | ||||||
| 
 | 
 | ||||||
|     app.run(host='0.0.0.0', port=WEB_PORT, debug=False) |     app.run(host='0.0.0.0', port=WEB_PORT, debug=False) | ||||||
| 
 | 
 | ||||||
|  | |||||||
| @ -41,50 +41,8 @@ class TrackedObjectProcessor(threading.Thread): | |||||||
|         else: |         else: | ||||||
|             return None |             return None | ||||||
|      |      | ||||||
|     def get_frame(self, config, camera, obj): |     def get_current_frame(self, camera): | ||||||
|         object_id_hash = hashlib.sha1(str.encode(f"{camera}{obj['frame_time']}")) |         return self.camera_data[camera]['current_frame'] | ||||||
|         object_id_bytes = object_id_hash.digest() |  | ||||||
|         object_id = plasma.ObjectID(object_id_bytes) |  | ||||||
|         best_frame = self.plasma_client.get(object_id) |  | ||||||
|         box = obj['box'] |  | ||||||
|         draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}") |  | ||||||
|         # print a timestamp |  | ||||||
|         if config['snapshots']['show_timestamp']: |  | ||||||
|             time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S") |  | ||||||
|             cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) |  | ||||||
|         return best_frame |  | ||||||
|      |  | ||||||
|     def current_frame_with_objects(self, camera): |  | ||||||
|         frame_time = self.camera_data[camera]['current_frame'] |  | ||||||
|         object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) |  | ||||||
|         object_id_bytes = object_id_hash.digest() |  | ||||||
|         object_id = plasma.ObjectID(object_id_bytes) |  | ||||||
|         current_frame = self.plasma_client.get(object_id) |  | ||||||
|              |  | ||||||
|         tracked_objects = copy.deepcopy(self.camera_data[camera]['tracked_objects']) |  | ||||||
| 
 |  | ||||||
|         # draw the bounding boxes on the screen |  | ||||||
|         for obj in tracked_objects.values(): |  | ||||||
|             thickness = 2 |  | ||||||
|             color = COLOR_MAP[obj['label']] |  | ||||||
|              |  | ||||||
|             if obj['frame_time'] != frame_time: |  | ||||||
|                 thickness = 1 |  | ||||||
|                 color = (255,0,0) |  | ||||||
| 
 |  | ||||||
|             box = obj['box'] |  | ||||||
|             draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) |  | ||||||
|          |  | ||||||
|         # # print fps |  | ||||||
|         # cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) |  | ||||||
| 
 |  | ||||||
|         # convert to BGR |  | ||||||
|         frame = cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR) |  | ||||||
| 
 |  | ||||||
|         # encode the image into a jpg |  | ||||||
|         ret, jpg = cv2.imencode('.jpg', frame) |  | ||||||
| 
 |  | ||||||
|         return jpg.tobytes() |  | ||||||
| 
 | 
 | ||||||
|     def run(self): |     def run(self): | ||||||
|         while True: |         while True: | ||||||
| @ -94,21 +52,56 @@ class TrackedObjectProcessor(threading.Thread): | |||||||
|             best_objects = self.camera_data[camera]['best_objects'] |             best_objects = self.camera_data[camera]['best_objects'] | ||||||
|             current_object_status = self.camera_data[camera]['object_status'] |             current_object_status = self.camera_data[camera]['object_status'] | ||||||
|             self.camera_data[camera]['tracked_objects'] = tracked_objects |             self.camera_data[camera]['tracked_objects'] = tracked_objects | ||||||
|             self.camera_data[camera]['current_frame'] = frame_time | 
 | ||||||
|  |             ### | ||||||
|  |             # Draw tracked objects on the frame | ||||||
|  |             ### | ||||||
|  |             object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) | ||||||
|  |             object_id_bytes = object_id_hash.digest() | ||||||
|  |             object_id = plasma.ObjectID(object_id_bytes) | ||||||
|  |             current_frame = self.plasma_client.get(object_id) | ||||||
|  | 
 | ||||||
|  |             # draw the bounding boxes on the frame | ||||||
|  |             for obj in tracked_objects.values(): | ||||||
|  |                 thickness = 2 | ||||||
|  |                 color = COLOR_MAP[obj['label']] | ||||||
|  |                  | ||||||
|  |                 if obj['frame_time'] != frame_time: | ||||||
|  |                     thickness = 1 | ||||||
|  |                     color = (255,0,0) | ||||||
|  | 
 | ||||||
|  |                 # draw the bounding boxes on the frame | ||||||
|  |                 box = obj['box'] | ||||||
|  |                 draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) | ||||||
|  |                 # draw the regions on the frame | ||||||
|  |                 region = obj['region'] | ||||||
|  |                 cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) | ||||||
|  |              | ||||||
|  |             if config['snapshots']['show_timestamp']: | ||||||
|  |                 time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") | ||||||
|  |                 cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) | ||||||
|  | 
 | ||||||
|  |             ### | ||||||
|  |             # Set the current frame as ready | ||||||
|  |             ### | ||||||
|  |             self.camera_data[camera]['current_frame'] = current_frame | ||||||
|              |              | ||||||
|             ### |             ### | ||||||
|             # Maintain the highest scoring recent object and frame for each label |             # Maintain the highest scoring recent object and frame for each label | ||||||
|             ### |             ### | ||||||
|             for obj in tracked_objects.values(): |             for obj in tracked_objects.values(): | ||||||
|  |                 # if the object wasn't seen on the current frame, skip it | ||||||
|  |                 if obj['frame_time'] != frame_time: | ||||||
|  |                     continue | ||||||
|                 if obj['label'] in best_objects: |                 if obj['label'] in best_objects: | ||||||
|                     now = datetime.datetime.now().timestamp() |                     now = datetime.datetime.now().timestamp() | ||||||
|                     # if the object is a higher score than the current best score  |                     # if the object is a higher score than the current best score  | ||||||
|                     # or the current object is more than 1 minute old, use the new object |                     # or the current object is more than 1 minute old, use the new object | ||||||
|                     if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: |                     if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: | ||||||
|                         obj['frame'] = self.get_frame(config, camera, obj) |                         obj['frame'] = np.copy(current_frame) | ||||||
|                         best_objects[obj['label']] = obj |                         best_objects[obj['label']] = obj | ||||||
|                 else: |                 else: | ||||||
|                     obj['frame'] = self.get_frame(config, camera, obj) |                     obj['frame'] = np.copy(current_frame) | ||||||
|                     best_objects[obj['label']] = obj |                     best_objects[obj['label']] = obj | ||||||
| 
 | 
 | ||||||
|             ### |             ### | ||||||
|  | |||||||
| @ -9,7 +9,7 @@ import numpy as np | |||||||
| import multiprocessing as mp | import multiprocessing as mp | ||||||
| from collections import defaultdict | from collections import defaultdict | ||||||
| from scipy.spatial import distance as dist | from scipy.spatial import distance as dist | ||||||
| from frigate.util import draw_box_with_label, LABELS, calculate_region | from frigate.util import draw_box_with_label, calculate_region | ||||||
| 
 | 
 | ||||||
| # class ObjectCleaner(threading.Thread): | # class ObjectCleaner(threading.Thread): | ||||||
| #     def __init__(self, camera): | #     def __init__(self, camera): | ||||||
|  | |||||||
| @ -16,7 +16,7 @@ import copy | |||||||
| import itertools | import itertools | ||||||
| import json | import json | ||||||
| from collections import defaultdict | from collections import defaultdict | ||||||
| from frigate.util import tonumpyarray, LABELS, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond | from frigate.util import tonumpyarray, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond | ||||||
| # from frigate.object_detection import RegionPrepper, RegionRequester | # from frigate.object_detection import RegionPrepper, RegionRequester | ||||||
| from frigate.objects import ObjectTracker | from frigate.objects import ObjectTracker | ||||||
| # from frigate.mqtt import MqttObjectPublisher | # from frigate.mqtt import MqttObjectPublisher | ||||||
|  | |||||||
		Loading…
	
		Reference in New Issue
	
	Block a user