mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-26 13:47:03 +02:00
integrate object detection with motion detection
This commit is contained in:
parent
53c9a7368d
commit
80dbed8055
@ -25,8 +25,9 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
||||
# TODO: make dynamic?
|
||||
NUM_CLASSES = 90
|
||||
|
||||
REGIONS = "350,0,300:400,350,250:400,750,250"
|
||||
#REGIONS = os.getenv('REGIONS')
|
||||
# REGIONS = "350,0,300:400,350,250:400,750,250"
|
||||
# REGIONS = "400,350,250"
|
||||
REGIONS = os.getenv('REGIONS')
|
||||
|
||||
DETECTED_OBJECTS = []
|
||||
|
||||
@ -121,8 +122,6 @@ def main():
|
||||
shared_memory_objects = []
|
||||
for region in regions:
|
||||
shared_memory_objects.append({
|
||||
# create shared value for storing the time the frame was captured
|
||||
'frame_time': mp.Value('d', 0.0),
|
||||
# shared value for signaling to the capture process that we are ready for the next frame
|
||||
# (1 for ready 0 for not ready)
|
||||
'ready_for_frame': mp.Value('i', 1),
|
||||
@ -139,17 +138,19 @@ def main():
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
# create shared array for storing the full frame image data
|
||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create shared value for storing the frame_time
|
||||
shared_frame_time = mp.Value('d', 0.0)
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process.daemon = True
|
||||
|
||||
detection_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||
shared_memory_objects[index]['output_array'],
|
||||
shared_memory_objects[index]['frame_time'],
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset']))
|
||||
@ -158,8 +159,9 @@ def main():
|
||||
|
||||
motion_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_memory_objects[index]['frame_time'],
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['ready_for_frame'],
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset']))
|
||||
@ -197,7 +199,7 @@ def main():
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in DETECTED_OBJECTS:
|
||||
for obj in detected_objects:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
@ -212,6 +214,12 @@ def main():
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
(255,255,255), 2)
|
||||
|
||||
motion_status = 'No Motion'
|
||||
if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
|
||||
motion_status = 'Motion'
|
||||
cv2.putText(frame, motion_status, (10, 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
@ -234,7 +242,7 @@ def tonumpyarray(mp_arr):
|
||||
|
||||
# fetch the frames as fast a possible, only decoding the frames when the
|
||||
# detection_process has consumed the current frame
|
||||
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@ -249,16 +257,17 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
# if the detection_process is ready for the next frame decode it
|
||||
# if the anyone is ready for the next frame decode it
|
||||
# otherwise skip this frame and move onto the next one
|
||||
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
||||
if any(flag.value == 1 for flag in ready_for_frame_flags):
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
arr[:] = frame
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
# signal to the detection_processes by setting the shared_frame_time
|
||||
for shared_frame_time in shared_frame_times:
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
for flag in ready_for_frame_flags:
|
||||
flag.value = 0
|
||||
else:
|
||||
# sleep a little to reduce CPU usage
|
||||
time.sleep(0.01)
|
||||
@ -325,22 +334,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
||||
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||
|
||||
# do the actual object detection
|
||||
def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
no_frames_available = -1
|
||||
avg_frame = None
|
||||
last_motion = -1
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if it has been 30 seconds since the last motion, clear the flag
|
||||
if last_motion > 0 and (now - last_motion) > 30:
|
||||
last_motion = -1
|
||||
shared_motion.value = 0
|
||||
print("motion cleared")
|
||||
# if there isnt a frame ready for processing
|
||||
if shared_frame_time.value == 0.0:
|
||||
if shared_frame_time.value == frame_time:
|
||||
# save the first time there were no frames available
|
||||
if no_frames_available == -1:
|
||||
no_frames_available = now
|
||||
@ -352,6 +361,8 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
||||
else:
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
if ready_for_frame.value == 0:
|
||||
ready_for_frame.value = 1
|
||||
continue
|
||||
|
||||
# we got a valid frame, so reset the timer
|
||||
@ -360,21 +371,19 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
||||
# if the frame is more than 0.5 second old, discard it
|
||||
if (now - shared_frame_time.value) > 0.5:
|
||||
# signal that we need a new frame
|
||||
shared_frame_time.value = 0.0
|
||||
ready_for_frame.value = 1
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
# make a copy of the cropped frame
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
||||
frame_time = shared_frame_time.value
|
||||
# signal that the frame has been used so a new one will be ready
|
||||
shared_frame_time.value = 0.0
|
||||
ready_for_frame.value = 1
|
||||
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||
# convert to uint8
|
||||
gray = (gray/256).astype('uint8')
|
||||
# apply gaussian blur
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
@ -400,15 +409,14 @@ def detect_motion(shared_arr, shared_frame_time, shared_motion, frame_shape, reg
|
||||
if cv2.contourArea(c) < 50:
|
||||
continue
|
||||
|
||||
print("motion_detected")
|
||||
last_motion = now
|
||||
shared_motion.value = 1
|
||||
|
||||
# compute the bounding box for the contour, draw it on the frame,
|
||||
# and update the text
|
||||
(x, y, w, h) = cv2.boundingRect(c)
|
||||
cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
||||
cv2.imwrite("motion%d.png" % frame_time, cropped_frame)
|
||||
# (x, y, w, h) = cv2.boundingRect(c)
|
||||
# cv2.rectangle(cropped_frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
||||
# cv2.imwrite("motion%d.jpg" % frame_time, cropped_frame)
|
||||
if __name__ == '__main__':
|
||||
mp.freeze_support()
|
||||
main()
|
Loading…
Reference in New Issue
Block a user