diff --git a/frigate/db/sqlitevecq.py b/frigate/db/sqlitevecq.py index 1447fd48f..d630e1ddf 100644 --- a/frigate/db/sqlitevecq.py +++ b/frigate/db/sqlitevecq.py @@ -63,6 +63,6 @@ class SqliteVecQueueDatabase(SqliteQueueDatabase): self.execute_sql(""" CREATE VIRTUAL TABLE IF NOT EXISTS vec_faces USING vec0( id TEXT PRIMARY KEY, - face_embedding FLOAT[128] distance_metric=cosine + face_embedding FLOAT[512] distance_metric=cosine ); """) diff --git a/frigate/embeddings/embeddings.py b/frigate/embeddings/embeddings.py index a2de88394..23b8aa7ee 100644 --- a/frigate/embeddings/embeddings.py +++ b/frigate/embeddings/embeddings.py @@ -133,7 +133,7 @@ class Embeddings: model_name="facenet", model_file="facenet.onnx", download_urls={ - "facenet.onnx": "https://github.com/NicolasSM-001/faceNet.onnx-/raw/refs/heads/main/faceNet.onnx", + "facenet.onnx": "https://github.com/NickM-27/facenet-onnx/releases/download/v1.0/facenet.onnx", "facedet.onnx": "https://github.com/opencv/opencv_zoo/raw/refs/heads/main/models/face_detection_yunet/face_detection_yunet_2023mar_int8.onnx", }, model_size="large", diff --git a/frigate/embeddings/functions/onnx.py b/frigate/embeddings/functions/onnx.py index 200f728d3..035dc1cc2 100644 --- a/frigate/embeddings/functions/onnx.py +++ b/frigate/embeddings/functions/onnx.py @@ -222,7 +222,7 @@ class GenericONNXEmbedding: frame[y_center : y_center + og_h, x_center : x_center + og_w] = og frame = np.expand_dims(frame, axis=0) - return [{"image_input": frame}] + return [{"input_2": frame}] elif self.model_type == ModelTypeEnum.alpr_detect: preprocessed = [] for x in raw_inputs: