initial refactoring

This commit is contained in:
blakeblackshear 2019-02-25 20:27:02 -06:00
parent 9186634c60
commit 86f5d8128d
8 changed files with 410 additions and 373 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*.pyc
debug

View File

@ -10,192 +10,31 @@ import threading
import json
from contextlib import closing
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
import paho.mqtt.client as mqtt
from frigate.util import tonumpyarray
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner
from frigate.motion import detect_motion
from frigate.video import fetch_frames
from frigate.object_detection import detect_objects
RTSP_URL = os.getenv('RTSP_URL')
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
MQTT_HOST = os.getenv('MQTT_HOST')
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
# TODO: make dynamic?
NUM_CLASSES = 90
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = []
DEBUG = (os.getenv('DEBUG') == '1')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
if debug:
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
vis_util.visualize_boxes_and_labels_on_image_array(
cropped_frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
if score > 0.5:
box = boxes[0, index].tolist()
objects.append({
'name': str(category_index.get(value).get('name')),
'score': float(score),
'ymin': int((box[0] * region_size) + region_y_offset),
'xmin': int((box[1] * region_size) + region_x_offset),
'ymax': int((box[2] * region_size) + region_y_offset),
'xmax': int((box[3] * region_size) + region_x_offset)
})
return objects
class ObjectParser(threading.Thread):
def __init__(self, object_queue, objects_parsed):
threading.Thread.__init__(self)
self._object_queue = object_queue
self._objects_parsed = objects_parsed
def run(self):
global DETECTED_OBJECTS
while True:
obj = self._object_queue.get()
DETECTED_OBJECTS.append(obj)
# notify that objects were parsed
with self._objects_parsed:
self._objects_parsed.notify_all()
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
def run(self):
global DETECTED_OBJECTS
while True:
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = DETECTED_OBJECTS.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<1:
break
num_to_delete += 1
if num_to_delete > 0:
del DETECTED_OBJECTS[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# wait a bit before checking for more expired frames
time.sleep(0.2)
class MqttMotionPublisher(threading.Thread):
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.motion_changed = motion_changed
self.motion_flags = motion_flags
def run(self):
last_sent_motion = ""
while True:
with self.motion_changed:
self.motion_changed.wait()
# send message for motion
motion_status = 'OFF'
if any(obj.is_set() for obj in self.motion_flags):
motion_status = 'ON'
if last_sent_motion != motion_status:
last_sent_motion = motion_status
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, object_classes):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self.object_classes = object_classes
def run(self):
global DETECTED_OBJECTS
last_sent_payload = ""
while True:
# initialize the payload
payload = {}
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# add all the person scores in detected objects and
# average over past 1 seconds (5fps)
detected_objects = DETECTED_OBJECTS.copy()
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
payload['person'] = int(avg_person_score*100)
# send message for objects if different
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
def main():
DETECTED_OBJECTS = []
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
@ -234,7 +73,7 @@ def main():
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame while writing
# Lock to control access to the frame
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
@ -244,17 +83,20 @@ def main():
objects_parsed = mp.Condition()
# Queue for detected objects
object_queue = mp.Queue()
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the process to capture frames from the RTSP stream and store in a shared array
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
shared_frame_time, frame_lock, frame_ready, frame_shape))
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
capture_process.daemon = True
# for each region, start a separate process for motion detection and object detection
detection_processes = []
motion_processes = []
for region in regions:
detection_process = mp.Process(target=process_frames, args=(shared_arr,
detection_process = mp.Process(target=detect_objects, args=(shared_arr,
object_queue,
shared_frame_time,
frame_lock, frame_ready,
@ -278,34 +120,46 @@ def main():
motion_process.daemon = True
motion_processes.append(motion_process)
object_parser = ObjectParser(object_queue, objects_parsed)
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
object_parser.start()
object_cleaner = ObjectCleaner(objects_parsed)
# start a thread to expire objects from the detected objects list
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
object_cleaner.start()
# connect to mqtt and setup last will
client = mqtt.Client()
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
client.connect(MQTT_HOST, 1883, 60)
client.loop_start()
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed,
MQTT_OBJECT_CLASSES.split(','))
MQTT_OBJECT_CLASSES.split(','), DETECTED_OBJECTS)
mqtt_publisher.start()
# start thread to publish motion status
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
[region['motion_detected'] for region in regions])
mqtt_motion_publisher.start()
# start the process of capturing frames
capture_process.start()
print("capture_process pid ", capture_process.pid)
# start the object detection processes
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)
# start the motion detection processes
for motion_process in motion_processes:
motion_process.start()
print("motion_process pid ", motion_process.pid)
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/')
@ -314,7 +168,6 @@ def main():
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
global DETECTED_OBJECTS
while True:
# max out at 5 FPS
time.sleep(0.2)
@ -363,202 +216,5 @@ def main():
object_cleaner.join()
mqtt_publisher.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture()
video.open(RTSP_URL)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
success = video.open(RTSP_URL)
if not success:
time.sleep(1)
continue
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
with frame_lock:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
video.release()
# do the actual object detection
def process_frames(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
min_person_area, debug):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait until motion is detected
motion_detected.wait()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# make a copy of the cropped frame
with frame_lock:
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
for obj in objects:
# ignore persons below the size threshold
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
continue
obj['frame_time'] = frame_time
object_queue.put(obj)
# do the actual motion detection
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
avg_frame = None
avg_delta = None
frame_time = 0.0
motion_frames = 0
while True:
now = datetime.datetime.now().timestamp()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# lock and make a copy of the cropped frame
with frame_lock:
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
frame_time = shared_frame_time.value
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# apply image mask to remove areas from motion detection
gray[mask] = [255]
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
if avg_delta is None:
avg_delta = frameDelta.copy().astype("float")
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(avg_delta)
avg_delta_image[np.where(current_thresh==[0])] = [0]
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# if there are no contours, there is no motion
if len(cnts) < 1:
motion_frames = 0
continue
motion_found = False
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > min_motion_area:
motion_found = True
if debug:
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
x, y, w, h = cv2.boundingRect(c)
cv2.putText(cropped_frame, str(contour_area), (x, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
else:
break
if motion_found:
motion_frames += 1
# if there have been enough consecutive motion frames, report motion
if motion_frames >= 3:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(gray, avg_frame, 0.01)
motion_detected.set()
with motion_changed:
motion_changed.notify_all()
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(gray, avg_frame, 0.01)
motion_frames = 0
if motion_detected.is_set():
motion_detected.clear()
with motion_changed:
motion_changed.notify_all()
if debug and motion_frames == 3:
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
if __name__ == '__main__':
mp.freeze_support()
main()

114
frigate/motion.py Normal file
View File

@ -0,0 +1,114 @@
import datetime
import numpy as np
import cv2
import imutils
from . util import tonumpyarray
# do the actual motion detection
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
avg_frame = None
avg_delta = None
frame_time = 0.0
motion_frames = 0
while True:
now = datetime.datetime.now().timestamp()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# lock and make a copy of the cropped frame
with frame_lock:
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
frame_time = shared_frame_time.value
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# apply image mask to remove areas from motion detection
gray[mask] = [255]
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
if avg_delta is None:
avg_delta = frameDelta.copy().astype("float")
# compute the average delta over the past few frames
# the alpha value can be modified to configure how sensitive the motion detection is.
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
# this also assumes that a person is in the same location across more than a single frame
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
# compute the threshold image for the current frame
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(avg_delta)
avg_delta_image[np.where(current_thresh==[0])] = [0]
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# if there are no contours, there is no motion
if len(cnts) < 1:
motion_frames = 0
continue
motion_found = False
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > min_motion_area:
motion_found = True
if debug:
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
x, y, w, h = cv2.boundingRect(c)
cv2.putText(cropped_frame, str(contour_area), (x, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
else:
break
if motion_found:
motion_frames += 1
# if there have been enough consecutive motion frames, report motion
if motion_frames >= 3:
# only average in the current frame if the difference persists for at least 3 frames
cv2.accumulateWeighted(gray, avg_frame, 0.01)
motion_detected.set()
with motion_changed:
motion_changed.notify_all()
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(gray, avg_frame, 0.01)
motion_frames = 0
if motion_detected.is_set():
motion_detected.clear()
with motion_changed:
motion_changed.notify_all()
if debug and motion_frames == 3:
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)

57
frigate/mqtt.py Normal file
View File

@ -0,0 +1,57 @@
import json
import threading
class MqttMotionPublisher(threading.Thread):
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.motion_changed = motion_changed
self.motion_flags = motion_flags
def run(self):
last_sent_motion = ""
while True:
with self.motion_changed:
self.motion_changed.wait()
# send message for motion
motion_status = 'OFF'
if any(obj.is_set() for obj in self.motion_flags):
motion_status = 'ON'
if last_sent_motion != motion_status:
last_sent_motion = motion_status
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, object_classes, detected_objects):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self.object_classes = object_classes
self._detected_objects = detected_objects
def run(self):
last_sent_payload = ""
while True:
# initialize the payload
payload = {}
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# add all the person scores in detected objects and
# average over past 1 seconds (5fps)
detected_objects = self._detected_objects.copy()
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
payload['person'] = int(avg_person_score*100)
# send message for objects if different
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)

114
frigate/object_detection.py Normal file
View File

@ -0,0 +1,114 @@
import datetime
import cv2
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from . util import tonumpyarray
# TODO: make dynamic?
NUM_CLASSES = 90
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# do the actual object detection
def tf_detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
if debug:
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
vis_util.visualize_boxes_and_labels_on_image_array(
cropped_frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
if score > 0.5:
box = boxes[0, index].tolist()
objects.append({
'name': str(category_index.get(value).get('name')),
'score': float(score),
'ymin': int((box[0] * region_size) + region_y_offset),
'xmin': int((box[1] * region_size) + region_x_offset),
'ymax': int((box[2] * region_size) + region_y_offset),
'xmax': int((box[3] * region_size) + region_x_offset)
})
return objects
def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
min_person_area, debug):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait until motion is detected
motion_detected.wait()
with frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
frame_ready.wait()
# make a copy of the cropped frame
with frame_lock:
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects = tf_detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
for obj in objects:
# ignore persons below the size threshold
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
continue
obj['frame_time'] = frame_time
object_queue.put(obj)

48
frigate/objects.py Normal file
View File

@ -0,0 +1,48 @@
import time
import datetime
import threading
class ObjectParser(threading.Thread):
def __init__(self, object_queue, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._object_queue = object_queue
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
while True:
obj = self._object_queue.get()
self._detected_objects.append(obj)
# notify that objects were parsed
with self._objects_parsed:
self._objects_parsed.notify_all()
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
while True:
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<1:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
# wait a bit before checking for more expired frames
time.sleep(0.2)

5
frigate/util.py Normal file
View File

@ -0,0 +1,5 @@
import numpy as np
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)

41
frigate/video.py Normal file
View File

@ -0,0 +1,41 @@
import time
import datetime
import cv2
from . util import tonumpyarray
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture()
video.open(rtsp_url)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
success = video.open(rtsp_url)
if not success:
time.sleep(1)
continue
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
with frame_lock:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
video.release()