mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
initial refactoring
This commit is contained in:
parent
9186634c60
commit
86f5d8128d
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
*.pyc
|
||||||
|
debug
|
@ -10,192 +10,31 @@ import threading
|
|||||||
import json
|
import json
|
||||||
from contextlib import closing
|
from contextlib import closing
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tensorflow as tf
|
|
||||||
from object_detection.utils import label_map_util
|
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
from object_detection.utils import visualization_utils as vis_util
|
||||||
from flask import Flask, Response, make_response
|
from flask import Flask, Response, make_response
|
||||||
import paho.mqtt.client as mqtt
|
import paho.mqtt.client as mqtt
|
||||||
|
|
||||||
|
from frigate.util import tonumpyarray
|
||||||
|
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
||||||
|
from frigate.objects import ObjectParser, ObjectCleaner
|
||||||
|
from frigate.motion import detect_motion
|
||||||
|
from frigate.video import fetch_frames
|
||||||
|
from frigate.object_detection import detect_objects
|
||||||
|
|
||||||
RTSP_URL = os.getenv('RTSP_URL')
|
RTSP_URL = os.getenv('RTSP_URL')
|
||||||
|
|
||||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
||||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
||||||
|
|
||||||
# List of the strings that is used to add correct label for each box.
|
|
||||||
PATH_TO_LABELS = '/label_map.pbtext'
|
|
||||||
|
|
||||||
MQTT_HOST = os.getenv('MQTT_HOST')
|
MQTT_HOST = os.getenv('MQTT_HOST')
|
||||||
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
|
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
|
||||||
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
|
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
|
||||||
|
|
||||||
# TODO: make dynamic?
|
|
||||||
NUM_CLASSES = 90
|
|
||||||
|
|
||||||
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
||||||
# REGIONS = "400,350,250,50"
|
# REGIONS = "400,350,250,50"
|
||||||
REGIONS = os.getenv('REGIONS')
|
REGIONS = os.getenv('REGIONS')
|
||||||
|
|
||||||
DETECTED_OBJECTS = []
|
|
||||||
|
|
||||||
DEBUG = (os.getenv('DEBUG') == '1')
|
DEBUG = (os.getenv('DEBUG') == '1')
|
||||||
|
|
||||||
# Loading label map
|
|
||||||
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
||||||
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
||||||
use_display_name=True)
|
|
||||||
category_index = label_map_util.create_category_index(categories)
|
|
||||||
|
|
||||||
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
|
||||||
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
||||||
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
||||||
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
||||||
|
|
||||||
# Each box represents a part of the image where a particular object was detected.
|
|
||||||
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
||||||
|
|
||||||
# Each score represent how level of confidence for each of the objects.
|
|
||||||
# Score is shown on the result image, together with the class label.
|
|
||||||
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
||||||
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
||||||
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
||||||
|
|
||||||
# Actual detection.
|
|
||||||
(boxes, scores, classes, num_detections) = sess.run(
|
|
||||||
[boxes, scores, classes, num_detections],
|
|
||||||
feed_dict={image_tensor: image_np_expanded})
|
|
||||||
|
|
||||||
if debug:
|
|
||||||
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
|
|
||||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
||||||
cropped_frame,
|
|
||||||
np.squeeze(boxes),
|
|
||||||
np.squeeze(classes).astype(np.int32),
|
|
||||||
np.squeeze(scores),
|
|
||||||
category_index,
|
|
||||||
use_normalized_coordinates=True,
|
|
||||||
line_thickness=4)
|
|
||||||
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
||||||
|
|
||||||
|
|
||||||
# build an array of detected objects
|
|
||||||
objects = []
|
|
||||||
for index, value in enumerate(classes[0]):
|
|
||||||
score = scores[0, index]
|
|
||||||
if score > 0.5:
|
|
||||||
box = boxes[0, index].tolist()
|
|
||||||
objects.append({
|
|
||||||
'name': str(category_index.get(value).get('name')),
|
|
||||||
'score': float(score),
|
|
||||||
'ymin': int((box[0] * region_size) + region_y_offset),
|
|
||||||
'xmin': int((box[1] * region_size) + region_x_offset),
|
|
||||||
'ymax': int((box[2] * region_size) + region_y_offset),
|
|
||||||
'xmax': int((box[3] * region_size) + region_x_offset)
|
|
||||||
})
|
|
||||||
|
|
||||||
return objects
|
|
||||||
|
|
||||||
class ObjectParser(threading.Thread):
|
|
||||||
def __init__(self, object_queue, objects_parsed):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self._object_queue = object_queue
|
|
||||||
self._objects_parsed = objects_parsed
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
global DETECTED_OBJECTS
|
|
||||||
while True:
|
|
||||||
obj = self._object_queue.get()
|
|
||||||
DETECTED_OBJECTS.append(obj)
|
|
||||||
|
|
||||||
# notify that objects were parsed
|
|
||||||
with self._objects_parsed:
|
|
||||||
self._objects_parsed.notify_all()
|
|
||||||
|
|
||||||
class ObjectCleaner(threading.Thread):
|
|
||||||
def __init__(self, objects_parsed):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self._objects_parsed = objects_parsed
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
global DETECTED_OBJECTS
|
|
||||||
while True:
|
|
||||||
|
|
||||||
# expire the objects that are more than 1 second old
|
|
||||||
now = datetime.datetime.now().timestamp()
|
|
||||||
# look for the first object found within the last second
|
|
||||||
# (newest objects are appended to the end)
|
|
||||||
detected_objects = DETECTED_OBJECTS.copy()
|
|
||||||
num_to_delete = 0
|
|
||||||
for obj in detected_objects:
|
|
||||||
if now-obj['frame_time']<1:
|
|
||||||
break
|
|
||||||
num_to_delete += 1
|
|
||||||
if num_to_delete > 0:
|
|
||||||
del DETECTED_OBJECTS[:num_to_delete]
|
|
||||||
|
|
||||||
# notify that parsed objects were changed
|
|
||||||
with self._objects_parsed:
|
|
||||||
self._objects_parsed.notify_all()
|
|
||||||
|
|
||||||
# wait a bit before checking for more expired frames
|
|
||||||
time.sleep(0.2)
|
|
||||||
|
|
||||||
class MqttMotionPublisher(threading.Thread):
|
|
||||||
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.client = client
|
|
||||||
self.topic_prefix = topic_prefix
|
|
||||||
self.motion_changed = motion_changed
|
|
||||||
self.motion_flags = motion_flags
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
last_sent_motion = ""
|
|
||||||
while True:
|
|
||||||
with self.motion_changed:
|
|
||||||
self.motion_changed.wait()
|
|
||||||
|
|
||||||
# send message for motion
|
|
||||||
motion_status = 'OFF'
|
|
||||||
if any(obj.is_set() for obj in self.motion_flags):
|
|
||||||
motion_status = 'ON'
|
|
||||||
|
|
||||||
if last_sent_motion != motion_status:
|
|
||||||
last_sent_motion = motion_status
|
|
||||||
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
|
||||||
|
|
||||||
class MqttObjectPublisher(threading.Thread):
|
|
||||||
def __init__(self, client, topic_prefix, objects_parsed, object_classes):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.client = client
|
|
||||||
self.topic_prefix = topic_prefix
|
|
||||||
self.objects_parsed = objects_parsed
|
|
||||||
self.object_classes = object_classes
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
global DETECTED_OBJECTS
|
|
||||||
|
|
||||||
last_sent_payload = ""
|
|
||||||
while True:
|
|
||||||
|
|
||||||
# initialize the payload
|
|
||||||
payload = {}
|
|
||||||
|
|
||||||
# wait until objects have been parsed
|
|
||||||
with self.objects_parsed:
|
|
||||||
self.objects_parsed.wait()
|
|
||||||
|
|
||||||
# add all the person scores in detected objects and
|
|
||||||
# average over past 1 seconds (5fps)
|
|
||||||
detected_objects = DETECTED_OBJECTS.copy()
|
|
||||||
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
|
|
||||||
payload['person'] = int(avg_person_score*100)
|
|
||||||
|
|
||||||
# send message for objects if different
|
|
||||||
new_payload = json.dumps(payload, sort_keys=True)
|
|
||||||
if new_payload != last_sent_payload:
|
|
||||||
last_sent_payload = new_payload
|
|
||||||
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
DETECTED_OBJECTS = []
|
||||||
# Parse selected regions
|
# Parse selected regions
|
||||||
regions = []
|
regions = []
|
||||||
for region_string in REGIONS.split(':'):
|
for region_string in REGIONS.split(':'):
|
||||||
@ -234,7 +73,7 @@ def main():
|
|||||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||||
# create shared value for storing the frame_time
|
# create shared value for storing the frame_time
|
||||||
shared_frame_time = mp.Value('d', 0.0)
|
shared_frame_time = mp.Value('d', 0.0)
|
||||||
# Lock to control access to the frame while writing
|
# Lock to control access to the frame
|
||||||
frame_lock = mp.Lock()
|
frame_lock = mp.Lock()
|
||||||
# Condition for notifying that a new frame is ready
|
# Condition for notifying that a new frame is ready
|
||||||
frame_ready = mp.Condition()
|
frame_ready = mp.Condition()
|
||||||
@ -244,17 +83,20 @@ def main():
|
|||||||
objects_parsed = mp.Condition()
|
objects_parsed = mp.Condition()
|
||||||
# Queue for detected objects
|
# Queue for detected objects
|
||||||
object_queue = mp.Queue()
|
object_queue = mp.Queue()
|
||||||
|
|
||||||
# shape current frame so it can be treated as an image
|
# shape current frame so it can be treated as an image
|
||||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
|
# start the process to capture frames from the RTSP stream and store in a shared array
|
||||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
||||||
shared_frame_time, frame_lock, frame_ready, frame_shape))
|
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
|
||||||
capture_process.daemon = True
|
capture_process.daemon = True
|
||||||
|
|
||||||
|
# for each region, start a separate process for motion detection and object detection
|
||||||
detection_processes = []
|
detection_processes = []
|
||||||
motion_processes = []
|
motion_processes = []
|
||||||
for region in regions:
|
for region in regions:
|
||||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
detection_process = mp.Process(target=detect_objects, args=(shared_arr,
|
||||||
object_queue,
|
object_queue,
|
||||||
shared_frame_time,
|
shared_frame_time,
|
||||||
frame_lock, frame_ready,
|
frame_lock, frame_ready,
|
||||||
@ -278,34 +120,46 @@ def main():
|
|||||||
motion_process.daemon = True
|
motion_process.daemon = True
|
||||||
motion_processes.append(motion_process)
|
motion_processes.append(motion_process)
|
||||||
|
|
||||||
object_parser = ObjectParser(object_queue, objects_parsed)
|
# start a thread to parse objects from the queue
|
||||||
|
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
|
||||||
object_parser.start()
|
object_parser.start()
|
||||||
object_cleaner = ObjectCleaner(objects_parsed)
|
# start a thread to expire objects from the detected objects list
|
||||||
|
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
|
||||||
object_cleaner.start()
|
object_cleaner.start()
|
||||||
|
|
||||||
|
# connect to mqtt and setup last will
|
||||||
client = mqtt.Client()
|
client = mqtt.Client()
|
||||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||||
client.connect(MQTT_HOST, 1883, 60)
|
client.connect(MQTT_HOST, 1883, 60)
|
||||||
client.loop_start()
|
client.loop_start()
|
||||||
|
# publish a message to signal that the service is running
|
||||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||||
|
|
||||||
|
# start a thread to publish object scores (currently only person)
|
||||||
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed,
|
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed,
|
||||||
MQTT_OBJECT_CLASSES.split(','))
|
MQTT_OBJECT_CLASSES.split(','), DETECTED_OBJECTS)
|
||||||
mqtt_publisher.start()
|
mqtt_publisher.start()
|
||||||
|
|
||||||
|
# start thread to publish motion status
|
||||||
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
||||||
[region['motion_detected'] for region in regions])
|
[region['motion_detected'] for region in regions])
|
||||||
mqtt_motion_publisher.start()
|
mqtt_motion_publisher.start()
|
||||||
|
|
||||||
|
# start the process of capturing frames
|
||||||
capture_process.start()
|
capture_process.start()
|
||||||
print("capture_process pid ", capture_process.pid)
|
print("capture_process pid ", capture_process.pid)
|
||||||
|
|
||||||
|
# start the object detection processes
|
||||||
for detection_process in detection_processes:
|
for detection_process in detection_processes:
|
||||||
detection_process.start()
|
detection_process.start()
|
||||||
print("detection_process pid ", detection_process.pid)
|
print("detection_process pid ", detection_process.pid)
|
||||||
|
|
||||||
|
# start the motion detection processes
|
||||||
for motion_process in motion_processes:
|
for motion_process in motion_processes:
|
||||||
motion_process.start()
|
motion_process.start()
|
||||||
print("motion_process pid ", motion_process.pid)
|
print("motion_process pid ", motion_process.pid)
|
||||||
|
|
||||||
|
# create a flask app that encodes frames a mjpeg on demand
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
|
|
||||||
@app.route('/')
|
@app.route('/')
|
||||||
@ -314,7 +168,6 @@ def main():
|
|||||||
return Response(imagestream(),
|
return Response(imagestream(),
|
||||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||||
def imagestream():
|
def imagestream():
|
||||||
global DETECTED_OBJECTS
|
|
||||||
while True:
|
while True:
|
||||||
# max out at 5 FPS
|
# max out at 5 FPS
|
||||||
time.sleep(0.2)
|
time.sleep(0.2)
|
||||||
@ -363,202 +216,5 @@ def main():
|
|||||||
object_cleaner.join()
|
object_cleaner.join()
|
||||||
mqtt_publisher.join()
|
mqtt_publisher.join()
|
||||||
|
|
||||||
# convert shared memory array into numpy array
|
|
||||||
def tonumpyarray(mp_arr):
|
|
||||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
|
||||||
|
|
||||||
# fetch the frames as fast a possible, only decoding the frames when the
|
|
||||||
# detection_process has consumed the current frame
|
|
||||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
|
|
||||||
# convert shared memory array into numpy and shape into image array
|
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
# start the video capture
|
|
||||||
video = cv2.VideoCapture()
|
|
||||||
video.open(RTSP_URL)
|
|
||||||
# keep the buffer small so we minimize old data
|
|
||||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if the video stream is still open, and reopen if needed
|
|
||||||
if not video.isOpened():
|
|
||||||
success = video.open(RTSP_URL)
|
|
||||||
if not success:
|
|
||||||
time.sleep(1)
|
|
||||||
continue
|
|
||||||
# grab the frame, but dont decode it yet
|
|
||||||
ret = video.grab()
|
|
||||||
# snapshot the time the frame was grabbed
|
|
||||||
frame_time = datetime.datetime.now()
|
|
||||||
if ret:
|
|
||||||
# go ahead and decode the current frame
|
|
||||||
ret, frame = video.retrieve()
|
|
||||||
if ret:
|
|
||||||
# Lock access and update frame
|
|
||||||
with frame_lock:
|
|
||||||
arr[:] = frame
|
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
|
||||||
# Notify with the condition that a new frame is ready
|
|
||||||
with frame_ready:
|
|
||||||
frame_ready.notify_all()
|
|
||||||
|
|
||||||
video.release()
|
|
||||||
|
|
||||||
# do the actual object detection
|
|
||||||
def process_frames(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
|
||||||
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
||||||
min_person_area, debug):
|
|
||||||
# shape shared input array into frame for processing
|
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
||||||
detection_graph = tf.Graph()
|
|
||||||
with detection_graph.as_default():
|
|
||||||
od_graph_def = tf.GraphDef()
|
|
||||||
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
||||||
serialized_graph = fid.read()
|
|
||||||
od_graph_def.ParseFromString(serialized_graph)
|
|
||||||
tf.import_graph_def(od_graph_def, name='')
|
|
||||||
sess = tf.Session(graph=detection_graph)
|
|
||||||
|
|
||||||
frame_time = 0.0
|
|
||||||
while True:
|
|
||||||
now = datetime.datetime.now().timestamp()
|
|
||||||
|
|
||||||
# wait until motion is detected
|
|
||||||
motion_detected.wait()
|
|
||||||
|
|
||||||
with frame_ready:
|
|
||||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
|
||||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
||||||
frame_ready.wait()
|
|
||||||
|
|
||||||
# make a copy of the cropped frame
|
|
||||||
with frame_lock:
|
|
||||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
||||||
frame_time = shared_frame_time.value
|
|
||||||
|
|
||||||
# convert to RGB
|
|
||||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
||||||
# do the object detection
|
|
||||||
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
|
||||||
for obj in objects:
|
|
||||||
# ignore persons below the size threshold
|
|
||||||
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
|
|
||||||
continue
|
|
||||||
obj['frame_time'] = frame_time
|
|
||||||
object_queue.put(obj)
|
|
||||||
|
|
||||||
|
|
||||||
# do the actual motion detection
|
|
||||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
|
||||||
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
|
|
||||||
# shape shared input array into frame for processing
|
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
||||||
|
|
||||||
avg_frame = None
|
|
||||||
avg_delta = None
|
|
||||||
frame_time = 0.0
|
|
||||||
motion_frames = 0
|
|
||||||
while True:
|
|
||||||
now = datetime.datetime.now().timestamp()
|
|
||||||
|
|
||||||
with frame_ready:
|
|
||||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
|
||||||
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
||||||
frame_ready.wait()
|
|
||||||
|
|
||||||
# lock and make a copy of the cropped frame
|
|
||||||
with frame_lock:
|
|
||||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
|
||||||
frame_time = shared_frame_time.value
|
|
||||||
|
|
||||||
# convert to grayscale
|
|
||||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
||||||
|
|
||||||
# apply image mask to remove areas from motion detection
|
|
||||||
gray[mask] = [255]
|
|
||||||
|
|
||||||
# apply gaussian blur
|
|
||||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
||||||
|
|
||||||
if avg_frame is None:
|
|
||||||
avg_frame = gray.copy().astype("float")
|
|
||||||
continue
|
|
||||||
|
|
||||||
# look at the delta from the avg_frame
|
|
||||||
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
|
||||||
|
|
||||||
if avg_delta is None:
|
|
||||||
avg_delta = frameDelta.copy().astype("float")
|
|
||||||
|
|
||||||
# compute the average delta over the past few frames
|
|
||||||
# the alpha value can be modified to configure how sensitive the motion detection is.
|
|
||||||
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
|
||||||
# register as motion, too low and a fast moving person wont be detected as motion
|
|
||||||
# this also assumes that a person is in the same location across more than a single frame
|
|
||||||
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
|
|
||||||
|
|
||||||
# compute the threshold image for the current frame
|
|
||||||
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
||||||
|
|
||||||
# black out everything in the avg_delta where there isnt motion in the current frame
|
|
||||||
avg_delta_image = cv2.convertScaleAbs(avg_delta)
|
|
||||||
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
|
||||||
|
|
||||||
# then look for deltas above the threshold, but only in areas where there is a delta
|
|
||||||
# in the current frame. this prevents deltas from previous frames from being included
|
|
||||||
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
|
||||||
|
|
||||||
# dilate the thresholded image to fill in holes, then find contours
|
|
||||||
# on thresholded image
|
|
||||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
|
||||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
cnts = imutils.grab_contours(cnts)
|
|
||||||
|
|
||||||
# if there are no contours, there is no motion
|
|
||||||
if len(cnts) < 1:
|
|
||||||
motion_frames = 0
|
|
||||||
continue
|
|
||||||
|
|
||||||
motion_found = False
|
|
||||||
|
|
||||||
# loop over the contours
|
|
||||||
for c in cnts:
|
|
||||||
# if the contour is big enough, count it as motion
|
|
||||||
contour_area = cv2.contourArea(c)
|
|
||||||
if contour_area > min_motion_area:
|
|
||||||
motion_found = True
|
|
||||||
if debug:
|
|
||||||
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
|
|
||||||
x, y, w, h = cv2.boundingRect(c)
|
|
||||||
cv2.putText(cropped_frame, str(contour_area), (x, y),
|
|
||||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
|
|
||||||
if motion_found:
|
|
||||||
motion_frames += 1
|
|
||||||
# if there have been enough consecutive motion frames, report motion
|
|
||||||
if motion_frames >= 3:
|
|
||||||
# only average in the current frame if the difference persists for at least 3 frames
|
|
||||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
|
||||||
motion_detected.set()
|
|
||||||
with motion_changed:
|
|
||||||
motion_changed.notify_all()
|
|
||||||
else:
|
|
||||||
# when no motion, just keep averaging the frames together
|
|
||||||
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
|
||||||
motion_frames = 0
|
|
||||||
if motion_detected.is_set():
|
|
||||||
motion_detected.clear()
|
|
||||||
with motion_changed:
|
|
||||||
motion_changed.notify_all()
|
|
||||||
|
|
||||||
if debug and motion_frames == 3:
|
|
||||||
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
||||||
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
mp.freeze_support()
|
|
||||||
main()
|
main()
|
114
frigate/motion.py
Normal file
114
frigate/motion.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
import datetime
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import imutils
|
||||||
|
from . util import tonumpyarray
|
||||||
|
|
||||||
|
# do the actual motion detection
|
||||||
|
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
||||||
|
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
|
||||||
|
# shape shared input array into frame for processing
|
||||||
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
|
avg_frame = None
|
||||||
|
avg_delta = None
|
||||||
|
frame_time = 0.0
|
||||||
|
motion_frames = 0
|
||||||
|
while True:
|
||||||
|
now = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
with frame_ready:
|
||||||
|
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||||
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||||
|
frame_ready.wait()
|
||||||
|
|
||||||
|
# lock and make a copy of the cropped frame
|
||||||
|
with frame_lock:
|
||||||
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
||||||
|
frame_time = shared_frame_time.value
|
||||||
|
|
||||||
|
# convert to grayscale
|
||||||
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# apply image mask to remove areas from motion detection
|
||||||
|
gray[mask] = [255]
|
||||||
|
|
||||||
|
# apply gaussian blur
|
||||||
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||||
|
|
||||||
|
if avg_frame is None:
|
||||||
|
avg_frame = gray.copy().astype("float")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# look at the delta from the avg_frame
|
||||||
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
||||||
|
|
||||||
|
if avg_delta is None:
|
||||||
|
avg_delta = frameDelta.copy().astype("float")
|
||||||
|
|
||||||
|
# compute the average delta over the past few frames
|
||||||
|
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||||
|
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||||
|
# register as motion, too low and a fast moving person wont be detected as motion
|
||||||
|
# this also assumes that a person is in the same location across more than a single frame
|
||||||
|
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
|
||||||
|
|
||||||
|
# compute the threshold image for the current frame
|
||||||
|
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||||
|
|
||||||
|
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||||
|
avg_delta_image = cv2.convertScaleAbs(avg_delta)
|
||||||
|
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||||
|
|
||||||
|
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||||
|
# in the current frame. this prevents deltas from previous frames from being included
|
||||||
|
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||||
|
|
||||||
|
# dilate the thresholded image to fill in holes, then find contours
|
||||||
|
# on thresholded image
|
||||||
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||||
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cnts = imutils.grab_contours(cnts)
|
||||||
|
|
||||||
|
# if there are no contours, there is no motion
|
||||||
|
if len(cnts) < 1:
|
||||||
|
motion_frames = 0
|
||||||
|
continue
|
||||||
|
|
||||||
|
motion_found = False
|
||||||
|
|
||||||
|
# loop over the contours
|
||||||
|
for c in cnts:
|
||||||
|
# if the contour is big enough, count it as motion
|
||||||
|
contour_area = cv2.contourArea(c)
|
||||||
|
if contour_area > min_motion_area:
|
||||||
|
motion_found = True
|
||||||
|
if debug:
|
||||||
|
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
|
||||||
|
x, y, w, h = cv2.boundingRect(c)
|
||||||
|
cv2.putText(cropped_frame, str(contour_area), (x, y),
|
||||||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
if motion_found:
|
||||||
|
motion_frames += 1
|
||||||
|
# if there have been enough consecutive motion frames, report motion
|
||||||
|
if motion_frames >= 3:
|
||||||
|
# only average in the current frame if the difference persists for at least 3 frames
|
||||||
|
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||||
|
motion_detected.set()
|
||||||
|
with motion_changed:
|
||||||
|
motion_changed.notify_all()
|
||||||
|
else:
|
||||||
|
# when no motion, just keep averaging the frames together
|
||||||
|
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
||||||
|
motion_frames = 0
|
||||||
|
if motion_detected.is_set():
|
||||||
|
motion_detected.clear()
|
||||||
|
with motion_changed:
|
||||||
|
motion_changed.notify_all()
|
||||||
|
|
||||||
|
if debug and motion_frames == 3:
|
||||||
|
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
||||||
|
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
|
57
frigate/mqtt.py
Normal file
57
frigate/mqtt.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
import json
|
||||||
|
import threading
|
||||||
|
|
||||||
|
class MqttMotionPublisher(threading.Thread):
|
||||||
|
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.client = client
|
||||||
|
self.topic_prefix = topic_prefix
|
||||||
|
self.motion_changed = motion_changed
|
||||||
|
self.motion_flags = motion_flags
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
last_sent_motion = ""
|
||||||
|
while True:
|
||||||
|
with self.motion_changed:
|
||||||
|
self.motion_changed.wait()
|
||||||
|
|
||||||
|
# send message for motion
|
||||||
|
motion_status = 'OFF'
|
||||||
|
if any(obj.is_set() for obj in self.motion_flags):
|
||||||
|
motion_status = 'ON'
|
||||||
|
|
||||||
|
if last_sent_motion != motion_status:
|
||||||
|
last_sent_motion = motion_status
|
||||||
|
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
||||||
|
|
||||||
|
class MqttObjectPublisher(threading.Thread):
|
||||||
|
def __init__(self, client, topic_prefix, objects_parsed, object_classes, detected_objects):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.client = client
|
||||||
|
self.topic_prefix = topic_prefix
|
||||||
|
self.objects_parsed = objects_parsed
|
||||||
|
self.object_classes = object_classes
|
||||||
|
self._detected_objects = detected_objects
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
last_sent_payload = ""
|
||||||
|
while True:
|
||||||
|
|
||||||
|
# initialize the payload
|
||||||
|
payload = {}
|
||||||
|
|
||||||
|
# wait until objects have been parsed
|
||||||
|
with self.objects_parsed:
|
||||||
|
self.objects_parsed.wait()
|
||||||
|
|
||||||
|
# add all the person scores in detected objects and
|
||||||
|
# average over past 1 seconds (5fps)
|
||||||
|
detected_objects = self._detected_objects.copy()
|
||||||
|
avg_person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])/5
|
||||||
|
payload['person'] = int(avg_person_score*100)
|
||||||
|
|
||||||
|
# send message for objects if different
|
||||||
|
new_payload = json.dumps(payload, sort_keys=True)
|
||||||
|
if new_payload != last_sent_payload:
|
||||||
|
last_sent_payload = new_payload
|
||||||
|
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
114
frigate/object_detection.py
Normal file
114
frigate/object_detection.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
import datetime
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
from object_detection.utils import label_map_util
|
||||||
|
from object_detection.utils import visualization_utils as vis_util
|
||||||
|
from . util import tonumpyarray
|
||||||
|
|
||||||
|
# TODO: make dynamic?
|
||||||
|
NUM_CLASSES = 90
|
||||||
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||||
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||||
|
# List of the strings that is used to add correct label for each box.
|
||||||
|
PATH_TO_LABELS = '/label_map.pbtext'
|
||||||
|
|
||||||
|
# Loading label map
|
||||||
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
||||||
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
||||||
|
use_display_name=True)
|
||||||
|
category_index = label_map_util.create_category_index(categories)
|
||||||
|
|
||||||
|
# do the actual object detection
|
||||||
|
def tf_detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
||||||
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
||||||
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||||
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
||||||
|
|
||||||
|
# Each box represents a part of the image where a particular object was detected.
|
||||||
|
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
||||||
|
|
||||||
|
# Each score represent how level of confidence for each of the objects.
|
||||||
|
# Score is shown on the result image, together with the class label.
|
||||||
|
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
||||||
|
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
||||||
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
||||||
|
|
||||||
|
# Actual detection.
|
||||||
|
(boxes, scores, classes, num_detections) = sess.run(
|
||||||
|
[boxes, scores, classes, num_detections],
|
||||||
|
feed_dict={image_tensor: image_np_expanded})
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
|
||||||
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
||||||
|
cropped_frame,
|
||||||
|
np.squeeze(boxes),
|
||||||
|
np.squeeze(classes).astype(np.int32),
|
||||||
|
np.squeeze(scores),
|
||||||
|
category_index,
|
||||||
|
use_normalized_coordinates=True,
|
||||||
|
line_thickness=4)
|
||||||
|
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
||||||
|
|
||||||
|
|
||||||
|
# build an array of detected objects
|
||||||
|
objects = []
|
||||||
|
for index, value in enumerate(classes[0]):
|
||||||
|
score = scores[0, index]
|
||||||
|
if score > 0.5:
|
||||||
|
box = boxes[0, index].tolist()
|
||||||
|
objects.append({
|
||||||
|
'name': str(category_index.get(value).get('name')),
|
||||||
|
'score': float(score),
|
||||||
|
'ymin': int((box[0] * region_size) + region_y_offset),
|
||||||
|
'xmin': int((box[1] * region_size) + region_x_offset),
|
||||||
|
'ymax': int((box[2] * region_size) + region_y_offset),
|
||||||
|
'xmax': int((box[3] * region_size) + region_x_offset)
|
||||||
|
})
|
||||||
|
|
||||||
|
return objects
|
||||||
|
|
||||||
|
def detect_objects(shared_arr, object_queue, shared_frame_time, frame_lock, frame_ready,
|
||||||
|
motion_detected, frame_shape, region_size, region_x_offset, region_y_offset,
|
||||||
|
min_person_area, debug):
|
||||||
|
# shape shared input array into frame for processing
|
||||||
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||||
|
detection_graph = tf.Graph()
|
||||||
|
with detection_graph.as_default():
|
||||||
|
od_graph_def = tf.GraphDef()
|
||||||
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
||||||
|
serialized_graph = fid.read()
|
||||||
|
od_graph_def.ParseFromString(serialized_graph)
|
||||||
|
tf.import_graph_def(od_graph_def, name='')
|
||||||
|
sess = tf.Session(graph=detection_graph)
|
||||||
|
|
||||||
|
frame_time = 0.0
|
||||||
|
while True:
|
||||||
|
now = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
# wait until motion is detected
|
||||||
|
motion_detected.wait()
|
||||||
|
|
||||||
|
with frame_ready:
|
||||||
|
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
||||||
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||||
|
frame_ready.wait()
|
||||||
|
|
||||||
|
# make a copy of the cropped frame
|
||||||
|
with frame_lock:
|
||||||
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||||
|
frame_time = shared_frame_time.value
|
||||||
|
|
||||||
|
# convert to RGB
|
||||||
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||||
|
# do the object detection
|
||||||
|
objects = tf_detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
||||||
|
for obj in objects:
|
||||||
|
# ignore persons below the size threshold
|
||||||
|
if obj['name'] == 'person' and (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) < min_person_area:
|
||||||
|
continue
|
||||||
|
obj['frame_time'] = frame_time
|
||||||
|
object_queue.put(obj)
|
48
frigate/objects.py
Normal file
48
frigate/objects.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
import time
|
||||||
|
import datetime
|
||||||
|
import threading
|
||||||
|
|
||||||
|
class ObjectParser(threading.Thread):
|
||||||
|
def __init__(self, object_queue, objects_parsed, detected_objects):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self._object_queue = object_queue
|
||||||
|
self._objects_parsed = objects_parsed
|
||||||
|
self._detected_objects = detected_objects
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while True:
|
||||||
|
obj = self._object_queue.get()
|
||||||
|
self._detected_objects.append(obj)
|
||||||
|
|
||||||
|
# notify that objects were parsed
|
||||||
|
with self._objects_parsed:
|
||||||
|
self._objects_parsed.notify_all()
|
||||||
|
|
||||||
|
class ObjectCleaner(threading.Thread):
|
||||||
|
def __init__(self, objects_parsed, detected_objects):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self._objects_parsed = objects_parsed
|
||||||
|
self._detected_objects = detected_objects
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while True:
|
||||||
|
|
||||||
|
# expire the objects that are more than 1 second old
|
||||||
|
now = datetime.datetime.now().timestamp()
|
||||||
|
# look for the first object found within the last second
|
||||||
|
# (newest objects are appended to the end)
|
||||||
|
detected_objects = self._detected_objects.copy()
|
||||||
|
num_to_delete = 0
|
||||||
|
for obj in detected_objects:
|
||||||
|
if now-obj['frame_time']<1:
|
||||||
|
break
|
||||||
|
num_to_delete += 1
|
||||||
|
if num_to_delete > 0:
|
||||||
|
del self._detected_objects[:num_to_delete]
|
||||||
|
|
||||||
|
# notify that parsed objects were changed
|
||||||
|
with self._objects_parsed:
|
||||||
|
self._objects_parsed.notify_all()
|
||||||
|
|
||||||
|
# wait a bit before checking for more expired frames
|
||||||
|
time.sleep(0.2)
|
5
frigate/util.py
Normal file
5
frigate/util.py
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# convert shared memory array into numpy array
|
||||||
|
def tonumpyarray(mp_arr):
|
||||||
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
41
frigate/video.py
Normal file
41
frigate/video.py
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
import time
|
||||||
|
import datetime
|
||||||
|
import cv2
|
||||||
|
from . util import tonumpyarray
|
||||||
|
|
||||||
|
# fetch the frames as fast a possible, only decoding the frames when the
|
||||||
|
# detection_process has consumed the current frame
|
||||||
|
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
|
||||||
|
# convert shared memory array into numpy and shape into image array
|
||||||
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
|
# start the video capture
|
||||||
|
video = cv2.VideoCapture()
|
||||||
|
video.open(rtsp_url)
|
||||||
|
# keep the buffer small so we minimize old data
|
||||||
|
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# check if the video stream is still open, and reopen if needed
|
||||||
|
if not video.isOpened():
|
||||||
|
success = video.open(rtsp_url)
|
||||||
|
if not success:
|
||||||
|
time.sleep(1)
|
||||||
|
continue
|
||||||
|
# grab the frame, but dont decode it yet
|
||||||
|
ret = video.grab()
|
||||||
|
# snapshot the time the frame was grabbed
|
||||||
|
frame_time = datetime.datetime.now()
|
||||||
|
if ret:
|
||||||
|
# go ahead and decode the current frame
|
||||||
|
ret, frame = video.retrieve()
|
||||||
|
if ret:
|
||||||
|
# Lock access and update frame
|
||||||
|
with frame_lock:
|
||||||
|
arr[:] = frame
|
||||||
|
shared_frame_time.value = frame_time.timestamp()
|
||||||
|
# Notify with the condition that a new frame is ready
|
||||||
|
with frame_ready:
|
||||||
|
frame_ready.notify_all()
|
||||||
|
|
||||||
|
video.release()
|
Loading…
Reference in New Issue
Block a user