Initial custom classification model config support (#18362)

* Add basic config for defining a teachable machine model

* Add model type

* Add basic config for teachable machine models

* Adjust config for state and object

* Use config to process

* Correctly check for objects

* Remove debug

* Rename to not be teachable machine specific

* Cleanup
This commit is contained in:
Nicolas Mowen 2025-05-23 08:46:53 -06:00 committed by GitHub
parent 5dd30b273a
commit 8a1da3a89f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 229 additions and 5 deletions

View File

@ -34,10 +34,37 @@ class BirdClassificationConfig(FrigateBaseModel):
)
class CustomClassificationStateCameraConfig(FrigateBaseModel):
crop: list[int, int, int, int] = Field(
title="Crop of image frame on this camera to run classification on."
)
class CustomClassificationStateConfig(FrigateBaseModel):
cameras: Dict[str, CustomClassificationStateCameraConfig] = Field(
title="Cameras to run classification on."
)
class CustomClassificationObjectConfig(FrigateBaseModel):
objects: list[str] = Field(title="Object types to classify.")
class CustomClassificationConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable running the model.")
model_path: str = Field(title="Path to custom classification tflite model.")
labelmap_path: str = Field(title="Path to custom classification model labelmap.")
object_config: CustomClassificationObjectConfig | None = Field(default=None)
state_config: CustomClassificationStateConfig | None = Field(default=None)
class ClassificationConfig(FrigateBaseModel):
bird: BirdClassificationConfig = Field(
default_factory=BirdClassificationConfig, title="Bird classification config."
)
custom: Dict[str, CustomClassificationConfig] = Field(
default={}, title="Custom Classification Model Configs."
)
class SemanticSearchConfig(FrigateBaseModel):

View File

@ -0,0 +1,178 @@
"""Real time processor that works with classification tflite models."""
import logging
from typing import Any
import cv2
import numpy as np
from frigate.comms.event_metadata_updater import (
EventMetadataPublisher,
EventMetadataTypeEnum,
)
from frigate.config import FrigateConfig
from frigate.config.classification import CustomClassificationConfig
from frigate.util.builtin import load_labels
from frigate.util.object import calculate_region
from ..types import DataProcessorMetrics
from .api import RealTimeProcessorApi
try:
from tflite_runtime.interpreter import Interpreter
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
logger = logging.getLogger(__name__)
class CustomStateClassificationProcessor(RealTimeProcessorApi):
def __init__(
self,
config: FrigateConfig,
model_config: CustomClassificationConfig,
metrics: DataProcessorMetrics,
):
super().__init__(config, metrics)
self.model_config = model_config
self.interpreter: Interpreter = None
self.tensor_input_details: dict[str, Any] = None
self.tensor_output_details: dict[str, Any] = None
self.labelmap: dict[int, str] = {}
self.__build_detector()
def __build_detector(self) -> None:
self.interpreter = Interpreter(
model_path=self.model_config.model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(self.model_config.labelmap_path, prefill=0)
def process_frame(self, frame_data: dict[str, Any], frame: np.ndarray):
camera = frame_data.get("camera")
if camera not in self.model_config.state_config.cameras:
return
camera_config = self.model_config.state_config.cameras[camera]
x, y, x2, y2 = calculate_region(
frame.shape,
camera_config.crop[0],
camera_config.crop[1],
camera_config.crop[2],
camera_config.crop[3],
224,
1.0,
)
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
input = rgb[
y:y2,
x:x2,
]
if input.shape != (224, 224):
input = cv2.resize(input, (224, 224))
input = np.expand_dims(input, axis=0)
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
self.interpreter.invoke()
res: np.ndarray = self.interpreter.get_tensor(
self.tensor_output_details[0]["index"]
)[0]
print(f"the gate res is {res}")
probs = res / res.sum(axis=0)
best_id = np.argmax(probs)
score = round(probs[best_id], 2)
print(f"got {self.labelmap[best_id]} with score {score}")
def handle_request(self, topic, request_data):
return None
def expire_object(self, object_id, camera):
pass
class CustomObjectClassificationProcessor(RealTimeProcessorApi):
def __init__(
self,
config: FrigateConfig,
model_config: CustomClassificationConfig,
sub_label_publisher: EventMetadataPublisher,
metrics: DataProcessorMetrics,
):
super().__init__(config, metrics)
self.model_config = model_config
self.interpreter: Interpreter = None
self.sub_label_publisher = sub_label_publisher
self.tensor_input_details: dict[str, Any] = None
self.tensor_output_details: dict[str, Any] = None
self.detected_objects: dict[str, float] = {}
self.labelmap: dict[int, str] = {}
self.__build_detector()
def __build_detector(self) -> None:
self.interpreter = Interpreter(
model_path=self.model_config.model_path,
num_threads=2,
)
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
self.labelmap = load_labels(self.model_config.labelmap_path, prefill=0)
def process_frame(self, obj_data, frame):
if obj_data["label"] not in self.model_config.object_config.objects:
return
x, y, x2, y2 = calculate_region(
frame.shape,
obj_data["box"][0],
obj_data["box"][1],
obj_data["box"][2],
obj_data["box"][3],
224,
1.0,
)
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
input = rgb[
y:y2,
x:x2,
]
if input.shape != (224, 224):
input = cv2.resize(input, (224, 224))
input = np.expand_dims(input, axis=0)
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
self.interpreter.invoke()
res: np.ndarray = self.interpreter.get_tensor(
self.tensor_output_details[0]["index"]
)[0]
probs = res / res.sum(axis=0)
best_id = np.argmax(probs)
score = round(probs[best_id], 2)
previous_score = self.detected_objects.get(obj_data["id"], 0.0)
if score <= previous_score:
logger.debug(f"Score {score} is worse than previous score {previous_score}")
return
self.sub_label_publisher.publish(
EventMetadataTypeEnum.sub_label,
(obj_data["id"], self.labelmap[best_id], score),
)
self.detected_objects[obj_data["id"]] = score
def handle_request(self, topic, request_data):
return None
def expire_object(self, object_id, camera):
if object_id in self.detected_objects:
self.detected_objects.pop(object_id)

View File

@ -42,6 +42,10 @@ from frigate.data_processing.post.license_plate import (
)
from frigate.data_processing.real_time.api import RealTimeProcessorApi
from frigate.data_processing.real_time.bird import BirdRealTimeProcessor
from frigate.data_processing.real_time.custom_classification import (
CustomObjectClassificationProcessor,
CustomStateClassificationProcessor,
)
from frigate.data_processing.real_time.face import FaceRealTimeProcessor
from frigate.data_processing.real_time.license_plate import (
LicensePlateRealTimeProcessor,
@ -143,6 +147,18 @@ class EmbeddingMaintainer(threading.Thread):
)
)
for model in self.config.classification.custom.values():
self.realtime_processors.append(
CustomStateClassificationProcessor(self.config, model, self.metrics)
if model.state_config != None
else CustomObjectClassificationProcessor(
self.config,
model,
self.event_metadata_publisher,
self.metrics,
)
)
# post processors
self.post_processors: list[PostProcessorApi] = []
@ -172,7 +188,7 @@ class EmbeddingMaintainer(threading.Thread):
self._process_requests()
self._process_updates()
self._process_recordings_updates()
self._process_dedicated_lpr()
self._process_frame_updates()
self._expire_dedicated_lpr()
self._process_finalized()
self._process_event_metadata()
@ -449,7 +465,7 @@ class EmbeddingMaintainer(threading.Thread):
event_id, RegenerateDescriptionEnum(source)
)
def _process_dedicated_lpr(self) -> None:
def _process_frame_updates(self) -> None:
"""Process event updates"""
(topic, data) = self.detection_subscriber.check_for_update()
@ -458,7 +474,7 @@ class EmbeddingMaintainer(threading.Thread):
camera, frame_name, _, _, motion_boxes, _ = data
if not camera or not self.config.lpr.enabled or len(motion_boxes) == 0:
if not camera or len(motion_boxes) == 0:
return
camera_config = self.config.cameras[camera]
@ -466,8 +482,8 @@ class EmbeddingMaintainer(threading.Thread):
if (
camera_config.type != CameraTypeEnum.lpr
or "license_plate" in camera_config.objects.track
):
# we're not a dedicated lpr camera or we are one but we're using frigate+
) and len(self.config.classification.custom) == 0:
# no active features that use this data
return
try:
@ -487,6 +503,9 @@ class EmbeddingMaintainer(threading.Thread):
if isinstance(processor, LicensePlateRealTimeProcessor):
processor.process_frame(camera, yuv_frame, True)
if isinstance(processor, CustomStateClassificationProcessor):
processor.process_frame({"camera": camera}, yuv_frame)
self.frame_manager.close(frame_name)
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]: