mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
use events to signal when motion is detected
This commit is contained in:
parent
8525f05f29
commit
957bd2adeb
@ -153,7 +153,7 @@ class MqttPublisher(threading.Thread):
|
|||||||
|
|
||||||
# send message for motion
|
# send message for motion
|
||||||
motion_status = 'OFF'
|
motion_status = 'OFF'
|
||||||
if any(obj.value == 1 for obj in self.motion_flags):
|
if any(obj.is_set() for obj in self.motion_flags):
|
||||||
motion_status = 'ON'
|
motion_status = 'ON'
|
||||||
|
|
||||||
if motion_status != last_motion:
|
if motion_status != last_motion:
|
||||||
@ -172,11 +172,8 @@ def main():
|
|||||||
'x_offset': int(region_parts[1]),
|
'x_offset': int(region_parts[1]),
|
||||||
'y_offset': int(region_parts[2]),
|
'y_offset': int(region_parts[2]),
|
||||||
'min_object_size': int(region_parts[3]),
|
'min_object_size': int(region_parts[3]),
|
||||||
# shared value for signaling to the capture process that we are ready for the next frame
|
# Event for motion detection signaling
|
||||||
# (1 for ready 0 for not ready)
|
'motion_detected': mp.Event(),
|
||||||
'ready_for_frame': mp.Value('i', 1),
|
|
||||||
# shared value for motion detection signal (1 for motion 0 for no motion)
|
|
||||||
'motion_detected': mp.Value('i', 0),
|
|
||||||
# create shared array for storing 10 detected objects
|
# create shared array for storing 10 detected objects
|
||||||
# note: this must be a double even though the value you are storing
|
# note: this must be a double even though the value you are storing
|
||||||
# is a float. otherwise it stops updating the value in shared
|
# is a float. otherwise it stops updating the value in shared
|
||||||
@ -212,18 +209,18 @@ def main():
|
|||||||
capture_process.daemon = True
|
capture_process.daemon = True
|
||||||
|
|
||||||
detection_processes = []
|
detection_processes = []
|
||||||
for index, region in enumerate(regions):
|
motion_processes = []
|
||||||
|
for region in regions:
|
||||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||||
region['output_array'],
|
region['output_array'],
|
||||||
shared_frame_time,
|
shared_frame_time,
|
||||||
|
frame_lock, frame_ready,
|
||||||
region['motion_detected'],
|
region['motion_detected'],
|
||||||
frame_shape,
|
frame_shape,
|
||||||
region['size'], region['x_offset'], region['y_offset']))
|
region['size'], region['x_offset'], region['y_offset']))
|
||||||
detection_process.daemon = True
|
detection_process.daemon = True
|
||||||
detection_processes.append(detection_process)
|
detection_processes.append(detection_process)
|
||||||
|
|
||||||
motion_processes = []
|
|
||||||
for index, region in enumerate(regions):
|
|
||||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||||
shared_frame_time,
|
shared_frame_time,
|
||||||
frame_lock, frame_ready,
|
frame_lock, frame_ready,
|
||||||
@ -267,9 +264,8 @@ def main():
|
|||||||
# make a copy of the current detected objects
|
# make a copy of the current detected objects
|
||||||
detected_objects = DETECTED_OBJECTS.copy()
|
detected_objects = DETECTED_OBJECTS.copy()
|
||||||
# lock and make a copy of the current frame
|
# lock and make a copy of the current frame
|
||||||
frame_lock.aquire()
|
with frame_lock:
|
||||||
frame = frame_arr.copy()
|
frame = frame_arr.copy()
|
||||||
frame_lock.release()
|
|
||||||
# convert to RGB for drawing
|
# convert to RGB for drawing
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||||
# draw the bounding boxes on the screen
|
# draw the bounding boxes on the screen
|
||||||
@ -286,7 +282,7 @@ def main():
|
|||||||
|
|
||||||
for region in regions:
|
for region in regions:
|
||||||
color = (255,255,255)
|
color = (255,255,255)
|
||||||
if region['motion_detected'].value == 1:
|
if region['motion_detected'].is_set():
|
||||||
color = (0,255,0)
|
color = (0,255,0)
|
||||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||||
@ -336,10 +332,9 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
|||||||
ret, frame = video.retrieve()
|
ret, frame = video.retrieve()
|
||||||
if ret:
|
if ret:
|
||||||
# Lock access and update frame
|
# Lock access and update frame
|
||||||
frame_lock.acquire()
|
with frame_lock:
|
||||||
arr[:] = frame
|
arr[:] = frame
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
shared_frame_time.value = frame_time.timestamp()
|
||||||
frame_lock.release()
|
|
||||||
# Notify with the condition that a new frame is ready
|
# Notify with the condition that a new frame is ready
|
||||||
with frame_ready:
|
with frame_ready:
|
||||||
frame_ready.notify_all()
|
frame_ready.notify_all()
|
||||||
@ -347,7 +342,7 @@ def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_s
|
|||||||
video.release()
|
video.release()
|
||||||
|
|
||||||
# do the actual object detection
|
# do the actual object detection
|
||||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||||
debug = True
|
debug = True
|
||||||
# shape shared input array into frame for processing
|
# shape shared input array into frame for processing
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
@ -362,40 +357,20 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|||||||
tf.import_graph_def(od_graph_def, name='')
|
tf.import_graph_def(od_graph_def, name='')
|
||||||
sess = tf.Session(graph=detection_graph)
|
sess = tf.Session(graph=detection_graph)
|
||||||
|
|
||||||
no_frames_available = -1
|
|
||||||
frame_time = 0.0
|
frame_time = 0.0
|
||||||
while True:
|
while True:
|
||||||
now = datetime.datetime.now().timestamp()
|
now = datetime.datetime.now().timestamp()
|
||||||
# if there is no motion detected
|
|
||||||
if shared_motion.value == 0:
|
|
||||||
time.sleep(0.1)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# if there isnt a new frame ready for processing
|
# wait until motion is detected
|
||||||
if shared_frame_time.value == frame_time:
|
motion_detected.wait()
|
||||||
# save the first time there were no frames available
|
|
||||||
if no_frames_available == -1:
|
|
||||||
no_frames_available = now
|
|
||||||
# if there havent been any frames available in 30 seconds,
|
|
||||||
# sleep to avoid using so much cpu if the camera feed is down
|
|
||||||
if no_frames_available > 0 and (now - no_frames_available) > 30:
|
|
||||||
time.sleep(1)
|
|
||||||
print("sleeping because no frames have been available in a while")
|
|
||||||
else:
|
|
||||||
# rest a little bit to avoid maxing out the CPU
|
|
||||||
time.sleep(0.1)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# we got a valid frame, so reset the timer
|
with frame_ready:
|
||||||
no_frames_available = -1
|
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||||
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
||||||
# if the frame is more than 0.5 second old, ignore it
|
frame_ready.wait()
|
||||||
if (now - shared_frame_time.value) > 0.5:
|
|
||||||
# rest a little bit to avoid maxing out the CPU
|
|
||||||
time.sleep(0.1)
|
|
||||||
continue
|
|
||||||
|
|
||||||
# make a copy of the cropped frame
|
# make a copy of the cropped frame
|
||||||
|
with frame_lock:
|
||||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||||
frame_time = shared_frame_time.value
|
frame_time = shared_frame_time.value
|
||||||
|
|
||||||
@ -407,11 +382,10 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_moti
|
|||||||
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||||
|
|
||||||
# do the actual motion detection
|
# do the actual motion detection
|
||||||
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
|
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, debug):
|
||||||
# shape shared input array into frame for processing
|
# shape shared input array into frame for processing
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||||
|
|
||||||
no_frames_available = -1
|
|
||||||
avg_frame = None
|
avg_frame = None
|
||||||
last_motion = -1
|
last_motion = -1
|
||||||
frame_time = 0.0
|
frame_time = 0.0
|
||||||
@ -421,7 +395,7 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, shared
|
|||||||
# if it has been long enough since the last motion, clear the flag
|
# if it has been long enough since the last motion, clear the flag
|
||||||
if last_motion > 0 and (now - last_motion) > 2:
|
if last_motion > 0 and (now - last_motion) > 2:
|
||||||
last_motion = -1
|
last_motion = -1
|
||||||
shared_motion.value = 0
|
motion_detected.clear()
|
||||||
|
|
||||||
with frame_ready:
|
with frame_ready:
|
||||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
# if there isnt a frame ready for processing or it is old, wait for a signal
|
||||||
@ -429,10 +403,9 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, shared
|
|||||||
frame_ready.wait()
|
frame_ready.wait()
|
||||||
|
|
||||||
# lock and make a copy of the cropped frame
|
# lock and make a copy of the cropped frame
|
||||||
frame_lock.acquire()
|
with frame_lock:
|
||||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
||||||
frame_time = shared_frame_time.value
|
frame_time = shared_frame_time.value
|
||||||
frame_lock.release()
|
|
||||||
|
|
||||||
# convert to grayscale
|
# convert to grayscale
|
||||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||||
@ -480,7 +453,7 @@ def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, shared
|
|||||||
motion_frames += 1
|
motion_frames += 1
|
||||||
# if there have been enough consecutive motion frames, report motion
|
# if there have been enough consecutive motion frames, report motion
|
||||||
if motion_frames >= 3:
|
if motion_frames >= 3:
|
||||||
shared_motion.value = 1
|
motion_detected.set()
|
||||||
last_motion = now
|
last_motion = now
|
||||||
else:
|
else:
|
||||||
motion_frames = 0
|
motion_frames = 0
|
||||||
|
Loading…
Reference in New Issue
Block a user