mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-05 00:15:51 +01:00
Bird classification (#15966)
* Start working on bird processor * Initial setup for bird processing * Improvements to handling * Get classification working * Cleanup classification * Add classification config * Update sort
This commit is contained in:
parent
c9c011f05b
commit
9a2de78fc9
@ -3,13 +3,13 @@ from frigate.detectors import DetectorConfig, ModelConfig # noqa: F401
|
||||
from .auth import * # noqa: F403
|
||||
from .camera import * # noqa: F403
|
||||
from .camera_group import * # noqa: F403
|
||||
from .classification import * # noqa: F403
|
||||
from .config import * # noqa: F403
|
||||
from .database import * # noqa: F403
|
||||
from .logger import * # noqa: F403
|
||||
from .mqtt import * # noqa: F403
|
||||
from .notification import * # noqa: F403
|
||||
from .proxy import * # noqa: F403
|
||||
from .semantic_search import * # noqa: F403
|
||||
from .telemetry import * # noqa: F403
|
||||
from .tls import * # noqa: F403
|
||||
from .ui import * # noqa: F403
|
||||
|
@ -11,6 +11,22 @@ __all__ = [
|
||||
]
|
||||
|
||||
|
||||
class BirdClassificationConfig(FrigateBaseModel):
|
||||
enabled: bool = Field(default=False, title="Enable bird classification.")
|
||||
threshold: float = Field(
|
||||
default=0.9,
|
||||
title="Minimum classification score required to be considered a match.",
|
||||
gt=0.0,
|
||||
le=1.0,
|
||||
)
|
||||
|
||||
|
||||
class ClassificationConfig(FrigateBaseModel):
|
||||
bird: BirdClassificationConfig = Field(
|
||||
default_factory=BirdClassificationConfig, title="Bird classification config."
|
||||
)
|
||||
|
||||
|
||||
class SemanticSearchConfig(FrigateBaseModel):
|
||||
enabled: bool = Field(default=False, title="Enable semantic search.")
|
||||
reindex: Optional[bool] = Field(
|
@ -51,17 +51,18 @@ from .camera.review import ReviewConfig
|
||||
from .camera.snapshots import SnapshotsConfig
|
||||
from .camera.timestamp import TimestampStyleConfig
|
||||
from .camera_group import CameraGroupConfig
|
||||
from .classification import (
|
||||
ClassificationConfig,
|
||||
FaceRecognitionConfig,
|
||||
LicensePlateRecognitionConfig,
|
||||
SemanticSearchConfig,
|
||||
)
|
||||
from .database import DatabaseConfig
|
||||
from .env import EnvVars
|
||||
from .logger import LoggerConfig
|
||||
from .mqtt import MqttConfig
|
||||
from .notification import NotificationConfig
|
||||
from .proxy import ProxyConfig
|
||||
from .semantic_search import (
|
||||
FaceRecognitionConfig,
|
||||
LicensePlateRecognitionConfig,
|
||||
SemanticSearchConfig,
|
||||
)
|
||||
from .telemetry import TelemetryConfig
|
||||
from .tls import TlsConfig
|
||||
from .ui import UIConfig
|
||||
@ -331,6 +332,9 @@ class FrigateConfig(FrigateBaseModel):
|
||||
default_factory=TelemetryConfig, title="Telemetry configuration."
|
||||
)
|
||||
tls: TlsConfig = Field(default_factory=TlsConfig, title="TLS configuration.")
|
||||
classification: ClassificationConfig = Field(
|
||||
default_factory=ClassificationConfig, title="Object classification config."
|
||||
)
|
||||
semantic_search: SemanticSearchConfig = Field(
|
||||
default_factory=SemanticSearchConfig, title="Semantic search configuration."
|
||||
)
|
||||
|
154
frigate/data_processing/real_time/bird_processor.py
Normal file
154
frigate/data_processing/real_time/bird_processor.py
Normal file
@ -0,0 +1,154 @@
|
||||
"""Handle processing images to classify birds."""
|
||||
|
||||
import logging
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import FRIGATE_LOCALHOST, MODEL_CACHE_DIR
|
||||
from frigate.util.object import calculate_region
|
||||
|
||||
from ..types import DataProcessorMetrics
|
||||
from .api import RealTimeProcessorApi
|
||||
|
||||
try:
|
||||
from tflite_runtime.interpreter import Interpreter
|
||||
except ModuleNotFoundError:
|
||||
from tensorflow.lite.python.interpreter import Interpreter
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BirdProcessor(RealTimeProcessorApi):
|
||||
def __init__(self, config: FrigateConfig, metrics: DataProcessorMetrics):
|
||||
super().__init__(config, metrics)
|
||||
self.interpreter: Interpreter = None
|
||||
self.tensor_input_details: dict[str, any] = None
|
||||
self.tensor_output_details: dict[str, any] = None
|
||||
self.detected_birds: dict[str, float] = {}
|
||||
self.labelmap: dict[int, str] = {}
|
||||
|
||||
download_path = os.path.join(MODEL_CACHE_DIR, "bird")
|
||||
self.model_files = {
|
||||
"bird.tflite": "https://raw.githubusercontent.com/google-coral/test_data/master/mobilenet_v2_1.0_224_inat_bird_quant.tflite",
|
||||
"birdmap.txt": "https://raw.githubusercontent.com/google-coral/test_data/master/inat_bird_labels.txt",
|
||||
}
|
||||
|
||||
if not all(
|
||||
os.path.exists(os.path.join(download_path, n))
|
||||
for n in self.model_files.keys()
|
||||
):
|
||||
# conditionally import ModelDownloader
|
||||
from frigate.util.downloader import ModelDownloader
|
||||
|
||||
self.downloader = ModelDownloader(
|
||||
model_name="bird",
|
||||
download_path=download_path,
|
||||
file_names=self.model_files.keys(),
|
||||
download_func=self.__download_models,
|
||||
complete_func=self.__build_detector,
|
||||
)
|
||||
self.downloader.ensure_model_files()
|
||||
else:
|
||||
self.__build_detector()
|
||||
|
||||
def __download_models(self, path: str) -> None:
|
||||
try:
|
||||
file_name = os.path.basename(path)
|
||||
|
||||
# conditionally import ModelDownloader
|
||||
from frigate.util.downloader import ModelDownloader
|
||||
|
||||
ModelDownloader.download_from_url(self.model_files[file_name], path)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to download {path}: {e}")
|
||||
|
||||
def __build_detector(self) -> None:
|
||||
self.interpreter = Interpreter(
|
||||
model_path=os.path.join(MODEL_CACHE_DIR, "bird/bird.tflite"),
|
||||
num_threads=2,
|
||||
)
|
||||
self.interpreter.allocate_tensors()
|
||||
self.tensor_input_details = self.interpreter.get_input_details()
|
||||
self.tensor_output_details = self.interpreter.get_output_details()
|
||||
|
||||
i = 0
|
||||
|
||||
with open(os.path.join(MODEL_CACHE_DIR, "bird/birdmap.txt")) as f:
|
||||
line = f.readline()
|
||||
while line:
|
||||
start = line.find("(")
|
||||
end = line.find(")")
|
||||
self.labelmap[i] = line[start + 1 : end]
|
||||
i += 1
|
||||
line = f.readline()
|
||||
|
||||
def process_frame(self, obj_data, frame):
|
||||
if obj_data["label"] != "bird":
|
||||
return
|
||||
|
||||
x, y, x2, y2 = calculate_region(
|
||||
frame.shape,
|
||||
obj_data["box"][0],
|
||||
obj_data["box"][1],
|
||||
obj_data["box"][2],
|
||||
obj_data["box"][3],
|
||||
224,
|
||||
1.0,
|
||||
)
|
||||
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
||||
input = rgb[
|
||||
y:y2,
|
||||
x:x2,
|
||||
]
|
||||
|
||||
cv2.imwrite("/media/frigate/test_class.png", input)
|
||||
|
||||
input = np.expand_dims(input, axis=0)
|
||||
|
||||
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], input)
|
||||
self.interpreter.invoke()
|
||||
res: np.ndarray = self.interpreter.get_tensor(
|
||||
self.tensor_output_details[0]["index"]
|
||||
)[0]
|
||||
probs = res / res.sum(axis=0)
|
||||
best_id = np.argmax(probs)
|
||||
|
||||
if best_id == 964:
|
||||
logger.debug("No bird classification was detected.")
|
||||
return
|
||||
|
||||
score = round(probs[best_id], 2)
|
||||
|
||||
if score < self.config.classification.bird.threshold:
|
||||
logger.debug(f"Score {score} is not above required threshold")
|
||||
return
|
||||
|
||||
previous_score = self.detected_birds.get(obj_data["id"], 0.0)
|
||||
|
||||
if score <= previous_score:
|
||||
logger.debug(f"Score {score} is worse than previous score {previous_score}")
|
||||
return
|
||||
|
||||
resp = requests.post(
|
||||
f"{FRIGATE_LOCALHOST}/api/events/{obj_data['id']}/sub_label",
|
||||
json={
|
||||
"camera": obj_data.get("camera"),
|
||||
"subLabel": self.labelmap[best_id],
|
||||
"subLabelScore": score,
|
||||
},
|
||||
)
|
||||
|
||||
if resp.status_code == 200:
|
||||
self.detected_birds[obj_data["id"]] = score
|
||||
|
||||
def handle_request(self, request_data):
|
||||
return None
|
||||
|
||||
def expire_object(self, object_id):
|
||||
if object_id in self.detected_birds:
|
||||
self.detected_birds.pop(object_id)
|
@ -8,7 +8,7 @@ from pyclipper import ET_CLOSEDPOLYGON, JT_ROUND, PyclipperOffset
|
||||
from shapely.geometry import Polygon
|
||||
|
||||
from frigate.comms.inter_process import InterProcessRequestor
|
||||
from frigate.config.semantic_search import LicensePlateRecognitionConfig
|
||||
from frigate.config.classification import LicensePlateRecognitionConfig
|
||||
from frigate.embeddings.embeddings import Embeddings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
@ -30,6 +30,7 @@ from frigate.const import (
|
||||
UPDATE_EVENT_DESCRIPTION,
|
||||
)
|
||||
from frigate.data_processing.real_time.api import RealTimeProcessorApi
|
||||
from frigate.data_processing.real_time.bird_processor import BirdProcessor
|
||||
from frigate.data_processing.real_time.face_processor import FaceProcessor
|
||||
from frigate.data_processing.types import DataProcessorMetrics
|
||||
from frigate.embeddings.lpr.lpr import LicensePlateRecognition
|
||||
@ -78,6 +79,9 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
if self.config.face_recognition.enabled:
|
||||
self.processors.append(FaceProcessor(self.config, metrics))
|
||||
|
||||
if self.config.classification.bird.enabled:
|
||||
self.processors.append(BirdProcessor(self.config, metrics))
|
||||
|
||||
# create communication for updating event descriptions
|
||||
self.requestor = InterProcessRequestor()
|
||||
self.stop_event = stop_event
|
||||
|
Loading…
Reference in New Issue
Block a user