working dynamic regions, but messy

This commit is contained in:
Blake Blackshear 2019-12-31 14:59:22 -06:00
parent be1673b00a
commit 9cc46a71cb
6 changed files with 564 additions and 94 deletions

View File

@ -101,7 +101,8 @@ RUN pip install -U pip \
Flask \
paho-mqtt \
PyYAML \
matplotlib
matplotlib \
scipy
WORKDIR /opt/frigate/
ADD frigate frigate/

View File

@ -3,6 +3,7 @@ import cv2
import threading
import prctl
from collections import Counter, defaultdict
import itertools
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
@ -26,7 +27,7 @@ class MqttObjectPublisher(threading.Thread):
# total up all scores by object type
obj_counter = Counter()
for obj in detected_objects:
for obj in itertools.chain.from_iterable(detected_objects.values()):
obj_counter[obj['name']] += obj['score']
# report on detected objects

View File

@ -31,7 +31,7 @@ class PreppedQueueProcessor(threading.Thread):
frame = self.prepped_frame_queue.get()
# Actual detection.
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.4, top_k=5)
self.fps.update()
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
@ -56,8 +56,10 @@ class RegionRequester(threading.Thread):
# make a copy of the frame_time
frame_time = self.camera.frame_time.value
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
for index, region in enumerate(self.camera.config['regions']):
# queue with priority 1
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
@ -88,14 +90,14 @@ class RegionPrepper(threading.Thread):
# make a copy of the region
cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
# TODO: use Pillow-SIMD?
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame, axis=0)
# add the frame to the queue
if not self.prepped_frame_queue.full():
resize_request['frame'] = frame_expanded.flatten().copy()
self.prepped_frame_queue.put(resize_request)
resize_request['frame'] = frame_expanded.flatten().copy()
self.prepped_frame_queue.put(resize_request)

View File

@ -3,8 +3,10 @@ import datetime
import threading
import cv2
import prctl
import itertools
import numpy as np
from . util import draw_box_with_label, LABELS
from scipy.spatial import distance as dist
from . util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
@ -25,14 +27,13 @@ class ObjectCleaner(threading.Thread):
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
objects_removed = False
for frame_time in detected_objects.keys():
if now-frame_time>2:
del self._detected_objects[frame_time]
objects_removed = True
if objects_removed:
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
@ -49,88 +50,459 @@ class DetectedObjectsProcessor(threading.Thread):
objects = frame['detected_objects']
if len(objects) == 0:
return
# print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}")
# if len(objects) == 0:
# continue
for raw_obj in objects:
obj = {
'score': float(raw_obj.score),
'box': raw_obj.bounding_box.flatten().tolist(),
'name': str(LABELS[raw_obj.label_id]),
'score': float(raw_obj.score),
'box': {
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
},
'region': {
'xmin': frame['x_offset'],
'ymin': frame['y_offset'],
'xmax': frame['x_offset']+frame['size'],
'ymax': frame['y_offset']+frame['size']
},
'frame_time': frame['frame_time'],
'region_id': frame['region_id']
}
# find the matching region
region = self.camera.regions[frame['region_id']]
# Compute some extra properties
obj.update({
'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
})
if not obj['name'] == 'bicycle':
continue
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
obj['clipped'] = False
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
obj['clipped'] = True
# Compute the area
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
object_name = obj['name']
# find the matching region
# region = self.camera.regions[frame['region_id']]
if object_name in region['objects']:
obj_settings = region['objects'][object_name]
# object_name = obj['name']
# TODO: move all this to wherever we manage "tracked objects"
# if object_name in region['objects']:
# obj_settings = region['objects'][object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.get('min_area',-1) > obj['area']:
continue
# # if the min area is larger than the
# # detected object, don't add it to detected objects
# if obj_settings.get('min_area',-1) > obj['area']:
# continue
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.get('max_area', region['size']**2) < obj['area']:
continue
# # if the detected object is larger than the
# # max area, don't add it to detected objects
# if obj_settings.get('max_area', region['size']**2) < obj['area']:
# continue
# if the score is lower than the threshold, skip
if obj_settings.get('threshold', 0) > obj['score']:
continue
# # if the score is lower than the threshold, skip
# if obj_settings.get('threshold', 0) > obj['score']:
# continue
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# # compute the coordinates of the object and make sure
# # the location isnt outside the bounds of the image (can happen from rounding)
# y_location = min(int(obj['ymax']), len(self.mask)-1)
# x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if self.camera.mask[y_location][x_location] == [0]:
continue
# look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
# if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or
# (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
# (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
# (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
# # if the object is in a masked location, don't add it to detected objects
# if self.camera.mask[y_location][x_location] == [0]:
# continue
# size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
# This triggers WAY too often with stationary objects on the edge of a region.
# Every frame triggers it and fills the queue...
# I need to create a new region and add it to the list of regions, but
# it needs to check for a duplicate region first.
# see if the current object is a duplicate
# TODO: still need to decide which copy to keep
obj['duplicate'] = False
for existing_obj in self.camera.detected_objects[frame['frame_time']]:
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(existing_obj['box'], obj['region'])
# self.resize_queue.put({
# 'camera_name': self.name,
# 'frame_time': frame['frame_time'],
# 'region_id': frame['region_id'],
# 'size': size,
# 'x_offset': x_offset,
# 'y_offset': y_offset
# })
# print('object too close to region border')
#continue
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(obj['box'], existing_obj['region'])
self.camera.detected_objects.append(obj)
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than ?, flag as duplicate
if iou > .7:
obj['duplicate'] = True
break
self.camera.detected_objects[frame['frame_time']].append(obj)
with self.camera.regions_in_process_lock:
self.camera.regions_in_process[frame['frame_time']] -= 1
# print(f"Remaining regions for {frame['frame_time']}: {self.camera.regions_in_process[frame['frame_time']]}")
if self.camera.regions_in_process[frame['frame_time']] == 0:
del self.camera.regions_in_process[frame['frame_time']]
# print('Finished frame: ', frame['frame_time'])
self.camera.finished_frame_queue.put(frame['frame_time'])
with self.camera.objects_parsed:
self.camera.objects_parsed.notify_all()
# Thread that checks finished frames for clipped objects and sends back
# for processing if needed
class RegionRefiner(threading.Thread):
def __init__(self, camera):
threading.Thread.__init__(self)
self.camera = camera
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# TODO: I need to process the frames in order for tracking...
frame_time = self.camera.finished_frame_queue.get()
# print(f"{frame_time} finished")
object_groups = []
# group all the duplicate objects together
# TODO: should I be grouping by object type too? also, the order can determine how well they group...
for new_obj in self.camera.detected_objects[frame_time]:
matching_group = self.find_group(new_obj, object_groups)
if matching_group is None:
object_groups.append([new_obj])
else:
object_groups[matching_group].append(new_obj)
# just keep the unclipped objects
self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
# print(f"{frame_time} found {len(object_groups)} groups {object_groups}")
clipped_object = False
# deduped_objects = []
# find the largest unclipped object in each group
for group in object_groups:
unclipped_objects = [obj for obj in group if obj['clipped'] == False]
# if no unclipped objects, we need to look again
if len(unclipped_objects) == 0:
# print(f"{frame_time} no unclipped objects in group")
with self.camera.regions_in_process_lock:
if not frame_time in self.camera.regions_in_process:
self.camera.regions_in_process[frame_time] = 1
else:
self.camera.regions_in_process[frame_time] += 1
xmin = min([obj['box']['xmin'] for obj in group])
ymin = min([obj['box']['ymin'] for obj in group])
xmax = max([obj['box']['xmax'] for obj in group])
ymax = max([obj['box']['ymax'] for obj in group])
# calculate a new region that will hopefully get the entire object
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
xmin, ymin,
xmax, ymax)
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
# add it to the queue
self.camera.resize_queue.put({
'camera_name': self.camera.name,
'frame_time': frame_time,
'region_id': -1,
'size': size,
'x_offset': x_offset,
'y_offset': y_offset
})
self.camera.dynamic_region_fps.update()
clipped_object = True
# add the largest unclipped object
# TODO: this makes no sense
# deduped_objects.append(max(unclipped_objects, key=lambda obj: obj['area']))
# if we found a clipped object, then this frame is not ready for processing
if clipped_object:
continue
# print(f"{frame_time} is actually finished")
# self.camera.detected_objects[frame_time] = deduped_objects
# keep adding frames to the refined queue as long as they are finished
with self.camera.regions_in_process_lock:
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
def has_overlap(self, new_obj, obj, overlap=0):
# compute intersection rectangle with existing object and new objects region
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
# compute intersection rectangle with new object and existing objects region
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
# compute iou for the two intersection rectangles that were just computed
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
# if intersection is greater than overlap
if iou > overlap:
return True
else:
return False
def find_group(self, new_obj, groups):
for index, group in enumerate(groups):
for obj in group:
if self.has_overlap(new_obj, obj):
return index
return None
class ObjectTracker(threading.Thread):
def __init__(self, camera, max_disappeared):
threading.Thread.__init__(self)
self.camera = camera
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
def run(self):
prctl.set_name(self.__class__.__name__)
while True:
# TODO: track objects
frame_time = self.camera.refined_frame_queue.get()
f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
f.write(self.camera.frame_with_objects(frame_time))
f.close()
def register(self, index, obj):
id = f"{str(obj.frame_time)}-{index}"
self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id):
del self.disappeared[id]
del self.tracked_objects[id]
def update(self, id, new_obj):
new_obj.detections = self.tracked_objects[id].detections
new_obj.detections.append({
})
def match_and_update(self, new_objects):
# check to see if the list of input bounding box rectangles
# is empty
if len(new_objects) == 0:
# loop over any existing tracked objects and mark them
# as disappeared
for objectID in list(self.disappeared.keys()):
self.disappeared[objectID] += 1
# if we have reached a maximum number of consecutive
# frames where a given object has been marked as
# missing, deregister it
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# return early as there are no centroids or tracking info
# to update
return
# compute centroids
for obj in new_objects:
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
obj.centroid = (centroid_x, centroid_y)
if len(self.tracked_objects) == 0:
for index, obj in enumerate(new_objects):
self.register(index, obj)
return
new_centroids = np.array([o.centroid for o in new_objects])
current_ids = list(self.tracked_objects.keys())
current_centroids = np.array([o.centroid for o in self.tracked_objects])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
# val
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, new_objects[col])
self.disappeared[objectID] = 0
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute both the row and column index we have NOT yet
# examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
# loop over the unused row indexes
for row in unusedRows:
# grab the object ID for the corresponding row
# index and increment the disappeared counter
objectID = current_ids[row]
self.disappeared[objectID] += 1
# check to see if the number of consecutive
# frames the object has been marked "disappeared"
# for warrants deregistering the object
if self.disappeared[objectID] > self.max_disappeared:
self.deregister(objectID)
# otherwise, if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, new_objects[col])
# -------------
# # initialize an array of input centroids for the current frame
# inputCentroids = np.zeros((len(rects), 2), dtype="int")
# # loop over the bounding box rectangles
# for (i, (startX, startY, endX, endY)) in enumerate(rects):
# # use the bounding box coordinates to derive the centroid
# cX = int((startX + endX) / 2.0)
# cY = int((startY + endY) / 2.0)
# inputCentroids[i] = (cX, cY)
# # if we are currently not tracking any objects take the input
# # centroids and register each of them
# if len(self.objects) == 0:
# for i in range(0, len(inputCentroids)):
# self.register(inputCentroids[i])
# # otherwise, are are currently tracking objects so we need to
# # try to match the input centroids to existing object
# # centroids
# else:
# # grab the set of object IDs and corresponding centroids
# objectIDs = list(self.objects.keys())
# objectCentroids = list(self.objects.values())
# # compute the distance between each pair of object
# # centroids and input centroids, respectively -- our
# # goal will be to match an input centroid to an existing
# # object centroid
# D = dist.cdist(np.array(objectCentroids), inputCentroids)
# # in order to perform this matching we must (1) find the
# # smallest value in each row and then (2) sort the row
# # indexes based on their minimum values so that the row
# # with the smallest value is at the *front* of the index
# # list
# rows = D.min(axis=1).argsort()
# # next, we perform a similar process on the columns by
# # finding the smallest value in each column and then
# # sorting using the previously computed row index list
# cols = D.argmin(axis=1)[rows]
# # in order to determine if we need to update, register,
# # or deregister an object we need to keep track of which
# # of the rows and column indexes we have already examined
# usedRows = set()
# usedCols = set()
# # loop over the combination of the (row, column) index
# # tuples
# for (row, col) in zip(rows, cols):
# # if we have already examined either the row or
# # column value before, ignore it
# # val
# if row in usedRows or col in usedCols:
# continue
# # otherwise, grab the object ID for the current row,
# # set its new centroid, and reset the disappeared
# # counter
# objectID = objectIDs[row]
# self.objects[objectID] = inputCentroids[col]
# self.disappeared[objectID] = 0
# # indicate that we have examined each of the row and
# # column indexes, respectively
# usedRows.add(row)
# usedCols.add(col)
# # compute both the row and column index we have NOT yet
# # examined
# unusedRows = set(range(0, D.shape[0])).difference(usedRows)
# unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# # in the event that the number of object centroids is
# # equal or greater than the number of input centroids
# # we need to check and see if some of these objects have
# # potentially disappeared
# if D.shape[0] >= D.shape[1]:
# # loop over the unused row indexes
# for row in unusedRows:
# # grab the object ID for the corresponding row
# # index and increment the disappeared counter
# objectID = objectIDs[row]
# self.disappeared[objectID] += 1
# # check to see if the number of consecutive
# # frames the object has been marked "disappeared"
# # for warrants deregistering the object
# if self.disappeared[objectID] > self.maxDisappeared:
# self.deregister(objectID)
# # otherwise, if the number of input centroids is greater
# # than the number of existing object centroids we need to
# # register each new input centroid as a trackable object
# else:
# for col in unusedCols:
# self.register(inputCentroids[col])
# # return the set of trackable objects
# return self.objects
# Maintains the frame and object with the highest score
class BestFrames(threading.Thread):
@ -153,7 +525,7 @@ class BestFrames(threading.Thread):
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
for obj in detected_objects:
for obj in itertools.chain.from_iterable(detected_objects.values()):
if obj['name'] in self.best_objects:
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
@ -170,8 +542,8 @@ class BestFrames(threading.Thread):
if obj['frame_time'] in recent_frames:
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")

View File

@ -16,22 +16,22 @@ def ReadLabelFile(file_path):
return ret
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
# size is 50% larger than longest edge
size = max(xmax-xmin, ymax-ymin)
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*1.5)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int(((xmax-xmin)/2+xmin)-size/2)
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
# x_offset is midpoint of bounding box minus half the size
y_offset = int(((ymax-ymin)/2+ymin)-size/2)
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
if y_offset < 0:
y_offset = 0
@ -40,13 +40,44 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
return (size, x_offset, y_offset)
def compute_intersection_rectangle(box_a, box_b):
return {
'xmin': max(box_a['xmin'], box_b['xmin']),
'ymin': max(box_a['ymin'], box_b['ymin']),
'xmax': min(box_a['xmax'], box_b['xmax']),
'ymax': min(box_a['ymax'], box_b['ymax'])
}
def compute_intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = compute_intersection_rectangle(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info):
color = COLOR_MAP[label]
display_text = "{}: {}% {}".format(label,int(score*100),int(area))
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min),
(x_max, y_max),
color, 2)

View File

@ -9,10 +9,11 @@ import multiprocessing as mp
import subprocess as sp
import numpy as np
import prctl
import itertools
from collections import defaultdict
from . util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
from . object_detection import RegionPrepper, RegionRequester
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
from . mqtt import MqttObjectPublisher
# Stores 2 seconds worth of frames so they can be used for other threads
@ -24,7 +25,7 @@ class FrameTracker(threading.Thread):
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
def run(self):
prctl.set_name("FrameTracker")
while True:
@ -36,7 +37,7 @@ class FrameTracker(threading.Thread):
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
if (now - k) > 10:
del self.recent_frames[k]
def get_frame_shape(source):
@ -101,6 +102,7 @@ class CameraCapture(threading.Thread):
.reshape(self.camera.frame_shape)
)
self.camera.frame_cache[self.camera.frame_time.value] = self.camera.current_frame.copy()
self.camera.frame_queue.put(self.camera.frame_time.value)
# Notify with the condition that a new frame is ready
with self.camera.frame_ready:
self.camera.frame_ready.notify_all()
@ -111,8 +113,17 @@ class Camera:
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.detected_objects = defaultdict(lambda: [])
self.tracked_objects = []
self.frame_cache = {}
# queue for re-assembling frames in order
self.frame_queue = queue.Queue()
# track how many regions have been requested for a frame so we know when a frame is complete
self.regions_in_process = {}
# Lock to control access
self.regions_in_process_lock = mp.Lock()
self.finished_frame_queue = queue.Queue()
self.refined_frame_queue = queue.Queue()
self.ffmpeg = config.get('ffmpeg', {})
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
@ -149,7 +160,7 @@ class Camera:
self.detected_objects_queue = queue.Queue()
self.detected_objects_processor = DetectedObjectsProcessor(self)
self.detected_objects_processor.start()
# initialize the frame cache
self.cached_frame_with_objects = {
'frame_bytes': [],
@ -193,6 +204,16 @@ class Camera:
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to refine regions when objects are clipped
self.dynamic_region_fps = EventsPerSecond()
self.region_refiner = RegionRefiner(self)
self.region_refiner.start()
self.dynamic_region_fps.start()
# start a thread to track objects
self.object_tracker = ObjectTracker(self, 10)
self.object_tracker.start()
# start a thread to publish object scores
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
mqtt_publisher.start()
@ -270,12 +291,47 @@ class Camera:
def stats(self):
return {
'camera_fps': self.fps.eps(60),
'resize_queue': self.resize_queue.qsize()
'resize_queue': self.resize_queue.qsize(),
'frame_queue': self.frame_queue.qsize(),
'finished_frame_queue': self.finished_frame_queue.qsize(),
'refined_frame_queue': self.refined_frame_queue.qsize(),
'regions_in_process': self.regions_in_process,
'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
}
def frame_with_objects(self, frame_time):
frame = self.frame_cache[frame_time].copy()
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# draw the bounding boxes on the screen
for obj in self.detected_objects[frame_time]:
# for obj in detected_objects[frame_time]:
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
(obj['region']['xmax'], obj['region']['ymax']),
(0,255,0), 1)
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
# print a timestamp
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# print fps
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
# convert to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
return jpg.tobytes()
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.current_frame.copy()
@ -284,9 +340,16 @@ class Camera:
if frame_time == self.cached_frame_with_objects['frame_time']:
return self.cached_frame_with_objects['frame_bytes']
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# draw the bounding boxes on the screen
for obj in detected_objects:
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
for obj in [obj for frame_list in detected_objects.values() for obj in frame_list]:
# for obj in detected_objects[frame_time]:
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
(obj['region']['xmax'], obj['region']['ymax']),
(0,255,0), 2)
for region in self.regions:
color = (255,255,255)