mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
working dynamic regions, but messy
This commit is contained in:
parent
be1673b00a
commit
9cc46a71cb
@ -101,7 +101,8 @@ RUN pip install -U pip \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib
|
||||
matplotlib \
|
||||
scipy
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
ADD frigate frigate/
|
||||
|
@ -3,6 +3,7 @@ import cv2
|
||||
import threading
|
||||
import prctl
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects, best_frames):
|
||||
@ -26,7 +27,7 @@ class MqttObjectPublisher(threading.Thread):
|
||||
|
||||
# total up all scores by object type
|
||||
obj_counter = Counter()
|
||||
for obj in detected_objects:
|
||||
for obj in itertools.chain.from_iterable(detected_objects.values()):
|
||||
obj_counter[obj['name']] += obj['score']
|
||||
|
||||
# report on detected objects
|
||||
|
@ -31,7 +31,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
frame = self.prepped_frame_queue.get()
|
||||
|
||||
# Actual detection.
|
||||
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=5)
|
||||
frame['detected_objects'] = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.4, top_k=5)
|
||||
self.fps.update()
|
||||
self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
|
||||
|
||||
@ -56,8 +56,10 @@ class RegionRequester(threading.Thread):
|
||||
# make a copy of the frame_time
|
||||
frame_time = self.camera.frame_time.value
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
|
||||
|
||||
for index, region in enumerate(self.camera.config['regions']):
|
||||
# queue with priority 1
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
@ -91,11 +93,11 @@ class RegionPrepper(threading.Thread):
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
# TODO: use Pillow-SIMD?
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
frame_expanded = np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
# add the frame to the queue
|
||||
if not self.prepped_frame_queue.full():
|
||||
resize_request['frame'] = frame_expanded.flatten().copy()
|
||||
self.prepped_frame_queue.put(resize_request)
|
@ -3,8 +3,10 @@ import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import prctl
|
||||
import itertools
|
||||
import numpy as np
|
||||
from . util import draw_box_with_label, LABELS
|
||||
from scipy.spatial import distance as dist
|
||||
from . util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, objects_parsed, detected_objects):
|
||||
@ -25,14 +27,13 @@ class ObjectCleaner(threading.Thread):
|
||||
# (newest objects are appended to the end)
|
||||
detected_objects = self._detected_objects.copy()
|
||||
|
||||
num_to_delete = 0
|
||||
for obj in detected_objects:
|
||||
if now-obj['frame_time']<2:
|
||||
break
|
||||
num_to_delete += 1
|
||||
if num_to_delete > 0:
|
||||
del self._detected_objects[:num_to_delete]
|
||||
objects_removed = False
|
||||
for frame_time in detected_objects.keys():
|
||||
if now-frame_time>2:
|
||||
del self._detected_objects[frame_time]
|
||||
objects_removed = True
|
||||
|
||||
if objects_removed:
|
||||
# notify that parsed objects were changed
|
||||
with self._objects_parsed:
|
||||
self._objects_parsed.notify_all()
|
||||
@ -49,88 +50,459 @@ class DetectedObjectsProcessor(threading.Thread):
|
||||
|
||||
objects = frame['detected_objects']
|
||||
|
||||
if len(objects) == 0:
|
||||
return
|
||||
# print(f"Processing objects for: {frame['size']} {frame['x_offset']} {frame['y_offset']}")
|
||||
|
||||
# if len(objects) == 0:
|
||||
# continue
|
||||
|
||||
for raw_obj in objects:
|
||||
obj = {
|
||||
'score': float(raw_obj.score),
|
||||
'box': raw_obj.bounding_box.flatten().tolist(),
|
||||
'name': str(LABELS[raw_obj.label_id]),
|
||||
'score': float(raw_obj.score),
|
||||
'box': {
|
||||
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
},
|
||||
'region': {
|
||||
'xmin': frame['x_offset'],
|
||||
'ymin': frame['y_offset'],
|
||||
'xmax': frame['x_offset']+frame['size'],
|
||||
'ymax': frame['y_offset']+frame['size']
|
||||
},
|
||||
'frame_time': frame['frame_time'],
|
||||
'region_id': frame['region_id']
|
||||
}
|
||||
|
||||
# find the matching region
|
||||
region = self.camera.regions[frame['region_id']]
|
||||
if not obj['name'] == 'bicycle':
|
||||
continue
|
||||
|
||||
# Compute some extra properties
|
||||
obj.update({
|
||||
'xmin': int((obj['box'][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((obj['box'][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((obj['box'][2] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((obj['box'][3] * frame['size']) + frame['y_offset'])
|
||||
})
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
obj['clipped'] = False
|
||||
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
obj['clipped'] = True
|
||||
|
||||
# Compute the area
|
||||
obj['area'] = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
||||
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
|
||||
object_name = obj['name']
|
||||
# find the matching region
|
||||
# region = self.camera.regions[frame['region_id']]
|
||||
|
||||
if object_name in region['objects']:
|
||||
obj_settings = region['objects'][object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
continue
|
||||
# object_name = obj['name']
|
||||
# TODO: move all this to wherever we manage "tracked objects"
|
||||
# if object_name in region['objects']:
|
||||
# obj_settings = region['objects'][object_name]
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
||||
continue
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
continue
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.camera.mask[y_location][x_location] == [0]:
|
||||
continue
|
||||
|
||||
# look to see if the bounding box is too close to the region border and the region border is not the edge of the frame
|
||||
# if ((frame['x_offset'] > 0 and obj['box'][0] < 0.01) or
|
||||
# (frame['y_offset'] > 0 and obj['box'][1] < 0.01) or
|
||||
# (frame['x_offset']+frame['size'] < self.frame_shape[1] and obj['box'][2] > 0.99) or
|
||||
# (frame['y_offset']+frame['size'] < self.frame_shape[0] and obj['box'][3] > 0.99)):
|
||||
|
||||
# size, x_offset, y_offset = calculate_region(self.frame_shape, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'])
|
||||
# This triggers WAY too often with stationary objects on the edge of a region.
|
||||
# Every frame triggers it and fills the queue...
|
||||
# I need to create a new region and add it to the list of regions, but
|
||||
# it needs to check for a duplicate region first.
|
||||
|
||||
# self.resize_queue.put({
|
||||
# 'camera_name': self.name,
|
||||
# 'frame_time': frame['frame_time'],
|
||||
# 'region_id': frame['region_id'],
|
||||
# 'size': size,
|
||||
# 'x_offset': x_offset,
|
||||
# 'y_offset': y_offset
|
||||
# })
|
||||
# print('object too close to region border')
|
||||
# # if the min area is larger than the
|
||||
# # detected object, don't add it to detected objects
|
||||
# if obj_settings.get('min_area',-1) > obj['area']:
|
||||
# continue
|
||||
|
||||
self.camera.detected_objects.append(obj)
|
||||
# # if the detected object is larger than the
|
||||
# # max area, don't add it to detected objects
|
||||
# if obj_settings.get('max_area', region['size']**2) < obj['area']:
|
||||
# continue
|
||||
|
||||
# # if the score is lower than the threshold, skip
|
||||
# if obj_settings.get('threshold', 0) > obj['score']:
|
||||
# continue
|
||||
|
||||
# # compute the coordinates of the object and make sure
|
||||
# # the location isnt outside the bounds of the image (can happen from rounding)
|
||||
# y_location = min(int(obj['ymax']), len(self.mask)-1)
|
||||
# x_location = min(int((obj['xmax']-obj['xmin'])/2.0)+obj['xmin'], len(self.mask[0])-1)
|
||||
|
||||
# # if the object is in a masked location, don't add it to detected objects
|
||||
# if self.camera.mask[y_location][x_location] == [0]:
|
||||
# continue
|
||||
|
||||
# see if the current object is a duplicate
|
||||
# TODO: still need to decide which copy to keep
|
||||
obj['duplicate'] = False
|
||||
for existing_obj in self.camera.detected_objects[frame['frame_time']]:
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(existing_obj['box'], obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(obj['box'], existing_obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than ?, flag as duplicate
|
||||
if iou > .7:
|
||||
obj['duplicate'] = True
|
||||
break
|
||||
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"Remaining regions for {frame['frame_time']}: {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print('Finished frame: ', frame['frame_time'])
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
with self.camera.objects_parsed:
|
||||
self.camera.objects_parsed.notify_all()
|
||||
|
||||
# Thread that checks finished frames for clipped objects and sends back
|
||||
# for processing if needed
|
||||
class RegionRefiner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# TODO: I need to process the frames in order for tracking...
|
||||
frame_time = self.camera.finished_frame_queue.get()
|
||||
|
||||
# print(f"{frame_time} finished")
|
||||
|
||||
object_groups = []
|
||||
|
||||
# group all the duplicate objects together
|
||||
# TODO: should I be grouping by object type too? also, the order can determine how well they group...
|
||||
for new_obj in self.camera.detected_objects[frame_time]:
|
||||
matching_group = self.find_group(new_obj, object_groups)
|
||||
if matching_group is None:
|
||||
object_groups.append([new_obj])
|
||||
else:
|
||||
object_groups[matching_group].append(new_obj)
|
||||
|
||||
# just keep the unclipped objects
|
||||
self.camera.detected_objects[frame_time] = [obj for obj in self.camera.detected_objects[frame_time] if obj['clipped'] == False]
|
||||
|
||||
# print(f"{frame_time} found {len(object_groups)} groups {object_groups}")
|
||||
clipped_object = False
|
||||
# deduped_objects = []
|
||||
# find the largest unclipped object in each group
|
||||
for group in object_groups:
|
||||
unclipped_objects = [obj for obj in group if obj['clipped'] == False]
|
||||
# if no unclipped objects, we need to look again
|
||||
if len(unclipped_objects) == 0:
|
||||
# print(f"{frame_time} no unclipped objects in group")
|
||||
with self.camera.regions_in_process_lock:
|
||||
if not frame_time in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame_time] = 1
|
||||
else:
|
||||
self.camera.regions_in_process[frame_time] += 1
|
||||
xmin = min([obj['box']['xmin'] for obj in group])
|
||||
ymin = min([obj['box']['ymin'] for obj in group])
|
||||
xmax = max([obj['box']['xmax'] for obj in group])
|
||||
ymax = max([obj['box']['ymax'] for obj in group])
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
xmin, ymin,
|
||||
xmax, ymax)
|
||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
|
||||
# add it to the queue
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
self.camera.dynamic_region_fps.update()
|
||||
clipped_object = True
|
||||
|
||||
# add the largest unclipped object
|
||||
# TODO: this makes no sense
|
||||
# deduped_objects.append(max(unclipped_objects, key=lambda obj: obj['area']))
|
||||
|
||||
# if we found a clipped object, then this frame is not ready for processing
|
||||
if clipped_object:
|
||||
continue
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
# self.camera.detected_objects[frame_time] = deduped_objects
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.refined_frame_queue.put(self.camera.frame_queue.get())
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=0):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than overlap
|
||||
if iou > overlap:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def find_group(self, new_obj, groups):
|
||||
for index, group in enumerate(groups):
|
||||
for obj in group:
|
||||
if self.has_overlap(new_obj, obj):
|
||||
return index
|
||||
return None
|
||||
|
||||
class ObjectTracker(threading.Thread):
|
||||
def __init__(self, camera, max_disappeared):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = max_disappeared
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# TODO: track objects
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
f = open(f"/debug/{str(frame_time)}.jpg", 'wb')
|
||||
f.write(self.camera.frame_with_objects(frame_time))
|
||||
f.close()
|
||||
|
||||
|
||||
def register(self, index, obj):
|
||||
id = f"{str(obj.frame_time)}-{index}"
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
def deregister(self, id):
|
||||
del self.disappeared[id]
|
||||
del self.tracked_objects[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
new_obj.detections = self.tracked_objects[id].detections
|
||||
new_obj.detections.append({
|
||||
|
||||
})
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
# check to see if the list of input bounding box rectangles
|
||||
# is empty
|
||||
if len(new_objects) == 0:
|
||||
# loop over any existing tracked objects and mark them
|
||||
# as disappeared
|
||||
for objectID in list(self.disappeared.keys()):
|
||||
self.disappeared[objectID] += 1
|
||||
|
||||
# if we have reached a maximum number of consecutive
|
||||
# frames where a given object has been marked as
|
||||
# missing, deregister it
|
||||
if self.disappeared[objectID] > self.max_disappeared:
|
||||
self.deregister(objectID)
|
||||
|
||||
# return early as there are no centroids or tracking info
|
||||
# to update
|
||||
return
|
||||
|
||||
# compute centroids
|
||||
for obj in new_objects:
|
||||
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
||||
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
||||
obj.centroid = (centroid_x, centroid_y)
|
||||
|
||||
if len(self.tracked_objects) == 0:
|
||||
for index, obj in enumerate(new_objects):
|
||||
self.register(index, obj)
|
||||
return
|
||||
|
||||
new_centroids = np.array([o.centroid for o in new_objects])
|
||||
current_ids = list(self.tracked_objects.keys())
|
||||
current_centroids = np.array([o.centroid for o in self.tracked_objects])
|
||||
|
||||
# compute the distance between each pair of tracked
|
||||
# centroids and new centroids, respectively -- our
|
||||
# goal will be to match each new centroid to an existing
|
||||
# object centroid
|
||||
D = dist.cdist(current_centroids, new_centroids)
|
||||
|
||||
# in order to perform this matching we must (1) find the
|
||||
# smallest value in each row and then (2) sort the row
|
||||
# indexes based on their minimum values so that the row
|
||||
# with the smallest value is at the *front* of the index
|
||||
# list
|
||||
rows = D.min(axis=1).argsort()
|
||||
|
||||
# next, we perform a similar process on the columns by
|
||||
# finding the smallest value in each column and then
|
||||
# sorting using the previously computed row index list
|
||||
cols = D.argmin(axis=1)[rows]
|
||||
|
||||
# in order to determine if we need to update, register,
|
||||
# or deregister an object we need to keep track of which
|
||||
# of the rows and column indexes we have already examined
|
||||
usedRows = set()
|
||||
usedCols = set()
|
||||
|
||||
# loop over the combination of the (row, column) index
|
||||
# tuples
|
||||
for (row, col) in zip(rows, cols):
|
||||
# if we have already examined either the row or
|
||||
# column value before, ignore it
|
||||
# val
|
||||
if row in usedRows or col in usedCols:
|
||||
continue
|
||||
|
||||
# otherwise, grab the object ID for the current row,
|
||||
# set its new centroid, and reset the disappeared
|
||||
# counter
|
||||
objectID = current_ids[row]
|
||||
self.update(objectID, new_objects[col])
|
||||
self.disappeared[objectID] = 0
|
||||
|
||||
# indicate that we have examined each of the row and
|
||||
# column indexes, respectively
|
||||
usedRows.add(row)
|
||||
usedCols.add(col)
|
||||
|
||||
# compute both the row and column index we have NOT yet
|
||||
# examined
|
||||
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# in the event that the number of object centroids is
|
||||
# equal or greater than the number of input centroids
|
||||
# we need to check and see if some of these objects have
|
||||
# potentially disappeared
|
||||
if D.shape[0] >= D.shape[1]:
|
||||
# loop over the unused row indexes
|
||||
for row in unusedRows:
|
||||
# grab the object ID for the corresponding row
|
||||
# index and increment the disappeared counter
|
||||
objectID = current_ids[row]
|
||||
self.disappeared[objectID] += 1
|
||||
|
||||
# check to see if the number of consecutive
|
||||
# frames the object has been marked "disappeared"
|
||||
# for warrants deregistering the object
|
||||
if self.disappeared[objectID] > self.max_disappeared:
|
||||
self.deregister(objectID)
|
||||
|
||||
# otherwise, if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
else:
|
||||
for col in unusedCols:
|
||||
self.register(col, new_objects[col])
|
||||
|
||||
|
||||
# -------------
|
||||
|
||||
# # initialize an array of input centroids for the current frame
|
||||
# inputCentroids = np.zeros((len(rects), 2), dtype="int")
|
||||
|
||||
# # loop over the bounding box rectangles
|
||||
# for (i, (startX, startY, endX, endY)) in enumerate(rects):
|
||||
# # use the bounding box coordinates to derive the centroid
|
||||
# cX = int((startX + endX) / 2.0)
|
||||
# cY = int((startY + endY) / 2.0)
|
||||
# inputCentroids[i] = (cX, cY)
|
||||
|
||||
# # if we are currently not tracking any objects take the input
|
||||
# # centroids and register each of them
|
||||
# if len(self.objects) == 0:
|
||||
# for i in range(0, len(inputCentroids)):
|
||||
# self.register(inputCentroids[i])
|
||||
# # otherwise, are are currently tracking objects so we need to
|
||||
# # try to match the input centroids to existing object
|
||||
# # centroids
|
||||
# else:
|
||||
# # grab the set of object IDs and corresponding centroids
|
||||
# objectIDs = list(self.objects.keys())
|
||||
# objectCentroids = list(self.objects.values())
|
||||
|
||||
# # compute the distance between each pair of object
|
||||
# # centroids and input centroids, respectively -- our
|
||||
# # goal will be to match an input centroid to an existing
|
||||
# # object centroid
|
||||
# D = dist.cdist(np.array(objectCentroids), inputCentroids)
|
||||
|
||||
# # in order to perform this matching we must (1) find the
|
||||
# # smallest value in each row and then (2) sort the row
|
||||
# # indexes based on their minimum values so that the row
|
||||
# # with the smallest value is at the *front* of the index
|
||||
# # list
|
||||
# rows = D.min(axis=1).argsort()
|
||||
|
||||
# # next, we perform a similar process on the columns by
|
||||
# # finding the smallest value in each column and then
|
||||
# # sorting using the previously computed row index list
|
||||
# cols = D.argmin(axis=1)[rows]
|
||||
|
||||
# # in order to determine if we need to update, register,
|
||||
# # or deregister an object we need to keep track of which
|
||||
# # of the rows and column indexes we have already examined
|
||||
# usedRows = set()
|
||||
# usedCols = set()
|
||||
|
||||
# # loop over the combination of the (row, column) index
|
||||
# # tuples
|
||||
# for (row, col) in zip(rows, cols):
|
||||
# # if we have already examined either the row or
|
||||
# # column value before, ignore it
|
||||
# # val
|
||||
# if row in usedRows or col in usedCols:
|
||||
# continue
|
||||
|
||||
# # otherwise, grab the object ID for the current row,
|
||||
# # set its new centroid, and reset the disappeared
|
||||
# # counter
|
||||
# objectID = objectIDs[row]
|
||||
# self.objects[objectID] = inputCentroids[col]
|
||||
# self.disappeared[objectID] = 0
|
||||
|
||||
# # indicate that we have examined each of the row and
|
||||
# # column indexes, respectively
|
||||
# usedRows.add(row)
|
||||
# usedCols.add(col)
|
||||
|
||||
# # compute both the row and column index we have NOT yet
|
||||
# # examined
|
||||
# unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||
# unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# # in the event that the number of object centroids is
|
||||
# # equal or greater than the number of input centroids
|
||||
# # we need to check and see if some of these objects have
|
||||
# # potentially disappeared
|
||||
# if D.shape[0] >= D.shape[1]:
|
||||
# # loop over the unused row indexes
|
||||
# for row in unusedRows:
|
||||
# # grab the object ID for the corresponding row
|
||||
# # index and increment the disappeared counter
|
||||
# objectID = objectIDs[row]
|
||||
# self.disappeared[objectID] += 1
|
||||
|
||||
# # check to see if the number of consecutive
|
||||
# # frames the object has been marked "disappeared"
|
||||
# # for warrants deregistering the object
|
||||
# if self.disappeared[objectID] > self.maxDisappeared:
|
||||
# self.deregister(objectID)
|
||||
|
||||
# # otherwise, if the number of input centroids is greater
|
||||
# # than the number of existing object centroids we need to
|
||||
# # register each new input centroid as a trackable object
|
||||
# else:
|
||||
# for col in unusedCols:
|
||||
# self.register(inputCentroids[col])
|
||||
|
||||
# # return the set of trackable objects
|
||||
# return self.objects
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
@ -153,7 +525,7 @@ class BestFrames(threading.Thread):
|
||||
# make a copy of detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
|
||||
for obj in detected_objects:
|
||||
for obj in itertools.chain.from_iterable(detected_objects.values()):
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
@ -170,8 +542,8 @@ class BestFrames(threading.Thread):
|
||||
if obj['frame_time'] in recent_frames:
|
||||
best_frame = recent_frames[obj['frame_time']] #, np.zeros((720,1280,3), np.uint8))
|
||||
|
||||
draw_box_with_label(best_frame, obj['xmin'], obj['ymin'],
|
||||
obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']}")
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
|
@ -16,22 +16,22 @@ def ReadLabelFile(file_path):
|
||||
return ret
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is 50% larger than longest edge
|
||||
size = max(xmax-xmin, ymax-ymin)
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*1.5)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int(((xmax-xmin)/2+xmin)-size/2)
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int(((ymax-ymin)/2+ymin)-size/2)
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
@ -40,13 +40,44 @@ def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
|
||||
return (size, x_offset, y_offset)
|
||||
|
||||
def compute_intersection_rectangle(box_a, box_b):
|
||||
return {
|
||||
'xmin': max(box_a['xmin'], box_b['xmin']),
|
||||
'ymin': max(box_a['ymin'], box_b['ymin']),
|
||||
'xmax': min(box_a['xmax'], box_b['xmax']),
|
||||
'ymax': min(box_a['ymax'], box_b['ymax'])
|
||||
}
|
||||
|
||||
def compute_intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = compute_intersection_rectangle(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
||||
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, score, area):
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info):
|
||||
color = COLOR_MAP[label]
|
||||
display_text = "{}: {}% {}".format(label,int(score*100),int(area))
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, 2)
|
||||
|
@ -9,10 +9,11 @@ import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import prctl
|
||||
import itertools
|
||||
from collections import defaultdict
|
||||
from . util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
||||
from . object_detection import RegionPrepper, RegionRequester
|
||||
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor
|
||||
from . objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
||||
from . mqtt import MqttObjectPublisher
|
||||
|
||||
# Stores 2 seconds worth of frames so they can be used for other threads
|
||||
@ -36,7 +37,7 @@ class FrameTracker(threading.Thread):
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
for k in stored_frame_times:
|
||||
if (now - k) > 2:
|
||||
if (now - k) > 10:
|
||||
del self.recent_frames[k]
|
||||
|
||||
def get_frame_shape(source):
|
||||
@ -101,6 +102,7 @@ class CameraCapture(threading.Thread):
|
||||
.reshape(self.camera.frame_shape)
|
||||
)
|
||||
self.camera.frame_cache[self.camera.frame_time.value] = self.camera.current_frame.copy()
|
||||
self.camera.frame_queue.put(self.camera.frame_time.value)
|
||||
# Notify with the condition that a new frame is ready
|
||||
with self.camera.frame_ready:
|
||||
self.camera.frame_ready.notify_all()
|
||||
@ -111,8 +113,17 @@ class Camera:
|
||||
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
||||
self.name = name
|
||||
self.config = config
|
||||
self.detected_objects = []
|
||||
self.detected_objects = defaultdict(lambda: [])
|
||||
self.tracked_objects = []
|
||||
self.frame_cache = {}
|
||||
# queue for re-assembling frames in order
|
||||
self.frame_queue = queue.Queue()
|
||||
# track how many regions have been requested for a frame so we know when a frame is complete
|
||||
self.regions_in_process = {}
|
||||
# Lock to control access
|
||||
self.regions_in_process_lock = mp.Lock()
|
||||
self.finished_frame_queue = queue.Queue()
|
||||
self.refined_frame_queue = queue.Queue()
|
||||
|
||||
self.ffmpeg = config.get('ffmpeg', {})
|
||||
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
@ -193,6 +204,16 @@ class Camera:
|
||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
||||
self.object_cleaner.start()
|
||||
|
||||
# start a thread to refine regions when objects are clipped
|
||||
self.dynamic_region_fps = EventsPerSecond()
|
||||
self.region_refiner = RegionRefiner(self)
|
||||
self.region_refiner.start()
|
||||
self.dynamic_region_fps.start()
|
||||
|
||||
# start a thread to track objects
|
||||
self.object_tracker = ObjectTracker(self, 10)
|
||||
self.object_tracker.start()
|
||||
|
||||
# start a thread to publish object scores
|
||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
||||
mqtt_publisher.start()
|
||||
@ -270,12 +291,47 @@ class Camera:
|
||||
def stats(self):
|
||||
return {
|
||||
'camera_fps': self.fps.eps(60),
|
||||
'resize_queue': self.resize_queue.qsize()
|
||||
'resize_queue': self.resize_queue.qsize(),
|
||||
'frame_queue': self.frame_queue.qsize(),
|
||||
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
'regions_in_process': self.regions_in_process,
|
||||
'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
|
||||
}
|
||||
|
||||
def frame_with_objects(self, frame_time):
|
||||
frame = self.frame_cache[frame_time].copy()
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in self.detected_objects[frame_time]:
|
||||
# for obj in detected_objects[frame_time]:
|
||||
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
|
||||
(obj['region']['xmax'], obj['region']['ymax']),
|
||||
(0,255,0), 1)
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# print fps
|
||||
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
return jpg.tobytes()
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with self.frame_lock:
|
||||
frame = self.current_frame.copy()
|
||||
@ -284,9 +340,16 @@ class Camera:
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['xmin'], obj['ymin'], obj['xmax'], obj['ymax'], obj['name'], obj['score'], obj['area'])
|
||||
for obj in [obj for frame_list in detected_objects.values() for obj in frame_list]:
|
||||
# for obj in detected_objects[frame_time]:
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {obj['clipped']}")
|
||||
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
|
||||
(obj['region']['xmax'], obj['region']['ymax']),
|
||||
(0,255,0), 2)
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
|
Loading…
Reference in New Issue
Block a user