reduce grid size for contrast improvement (#6870)

This commit is contained in:
Blake Blackshear 2023-06-21 08:38:51 -05:00 committed by GitHub
parent 7c1568fcb9
commit 9e531b0b5b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 87 additions and 63 deletions

View File

@ -1,14 +1,13 @@
import datetime
import multiprocessing as mp
import os
from statistics import mean
import cv2
import numpy as np
from frigate.config import MotionConfig
from frigate.motion.frigate_motion import FrigateMotionDetector
from frigate.motion.improved_motion import ImprovedMotionDetector
from frigate.util import create_mask
# get info on the video
# cap = cv2.VideoCapture("debug/front_cam_2023_05_23_08_41__2023_05_23_08_43.mp4")
@ -20,84 +19,85 @@ height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_shape = (height, width, 3)
mask = create_mask(
(height, width),
[],
)
# create the motion config
motion_config = MotionConfig()
motion_config.mask = np.zeros((height, width), np.uint8)
motion_config.mask[:] = 255
motion_config.improve_contrast = 1
motion_config.frame_alpha = 0.02
motion_config.threshold = 40
motion_config.contour_area = 15
motion_config_1 = MotionConfig()
motion_config_1.mask = np.zeros((height, width), np.uint8)
motion_config_1.mask[:] = mask
# motion_config_1.improve_contrast = 1
# motion_config_1.frame_height = 150
# motion_config_1.frame_alpha = 0.02
# motion_config_1.threshold = 30
# motion_config_1.contour_area = 10
motion_config_2 = MotionConfig()
motion_config_2.mask = np.zeros((height, width), np.uint8)
motion_config_2.mask[:] = mask
# motion_config_2.improve_contrast = 1
# motion_config_2.frame_height = 150
# motion_config_2.frame_alpha = 0.01
# motion_config_2.threshold = 20
# motion_config.contour_area = 10
save_images = True
# create motion detectors
frigate_motion_detector = FrigateMotionDetector(
improved_motion_detector_1 = ImprovedMotionDetector(
frame_shape=frame_shape,
config=motion_config,
config=motion_config_1,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
improve_contrast=mp.Value("i", motion_config_1.improve_contrast),
threshold=mp.Value("i", motion_config_1.threshold),
contour_area=mp.Value("i", motion_config_1.contour_area),
name="default",
clipLimit=2.0,
tileGridSize=(8, 8),
)
frigate_motion_detector.save_images = save_images
improved_motion_detector_1.save_images = save_images
improved_motion_detector = ImprovedMotionDetector(
improved_motion_detector_2 = ImprovedMotionDetector(
frame_shape=frame_shape,
config=motion_config,
config=motion_config_2,
fps=fps,
improve_contrast=mp.Value("i", motion_config.improve_contrast),
threshold=mp.Value("i", motion_config.threshold),
contour_area=mp.Value("i", motion_config.contour_area),
improve_contrast=mp.Value("i", motion_config_2.improve_contrast),
threshold=mp.Value("i", motion_config_2.threshold),
contour_area=mp.Value("i", motion_config_2.contour_area),
name="compare",
)
improved_motion_detector.save_images = save_images
improved_motion_detector_2.save_images = save_images
# read and process frames
frame_times = {"frigate": [], "improved": []}
ret, frame = cap.read()
frame_counter = 1
while ret:
yuv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV_I420)
start_frame = datetime.datetime.now().timestamp()
frigate_motion_detector.detect(yuv_frame)
frame_times["frigate"].append(datetime.datetime.now().timestamp() - start_frame)
improved_motion_detector_1.detect(yuv_frame)
start_frame = datetime.datetime.now().timestamp()
improved_motion_detector.detect(yuv_frame)
frame_times["improved"].append(datetime.datetime.now().timestamp() - start_frame)
improved_motion_detector_2.detect(yuv_frame)
frigate_frame = f"debug/frames/frigate-{frame_counter}.jpg"
improved_frame = f"debug/frames/improved-{frame_counter}.jpg"
if os.path.exists(frigate_frame) and os.path.exists(improved_frame):
image_row_1 = cv2.hconcat(
[
cv2.imread(frigate_frame),
cv2.imread(improved_frame),
]
)
image_row_2 = cv2.resize(
frame,
dsize=(
frigate_motion_detector.motion_frame_size[1] * 2,
frigate_motion_detector.motion_frame_size[0] * 2,
),
interpolation=cv2.INTER_LINEAR,
)
default_frame = f"debug/frames/default-{frame_counter}.jpg"
compare_frame = f"debug/frames/compare-{frame_counter}.jpg"
if os.path.exists(default_frame) and os.path.exists(compare_frame):
images = [
cv2.imread(default_frame),
cv2.imread(compare_frame),
]
cv2.imwrite(
f"debug/frames/all-{frame_counter}.jpg",
cv2.vconcat([image_row_1, image_row_2]),
cv2.vconcat(images)
if frame_shape[0] > frame_shape[1]
else cv2.hconcat(images),
)
os.unlink(frigate_frame)
os.unlink(improved_frame)
os.unlink(default_frame)
os.unlink(compare_frame)
frame_counter += 1
ret, frame = cap.read()
cap.release()
print("Frigate Motion Detector")
print(f"Average frame processing time: {mean(frame_times['frigate'])*1000:.2f}ms")
print("Improved Motion Detector")
print(f"Average frame processing time: {mean(frame_times['improved'])*1000:.2f}ms")

View File

@ -230,7 +230,7 @@ detect:
# especially when using separate streams for detect and record.
# Use this setting to make the timeline bounding boxes more closely align
# with the recording. The value can be positive or negative.
# TIP: Imagine there is an event clip with a person walking from left to right.
# TIP: Imagine there is an event clip with a person walking from left to right.
# If the event timeline bounding box is consistently to the left of the person
# then the value should be decreased. Similarly, if a person is walking from
# left to right and the bounding box is consistently ahead of the person
@ -275,7 +275,7 @@ motion:
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
# The value should be between 1 and 255.
threshold: 40
threshold: 20
# Optional: The percentage of the image used to detect lightning or other substantial changes where motion detection
# needs to recalibrate. (default: shown below)
# Increasing this value will make motion detection more likely to consider lightning or ir mode changes as valid motion.
@ -286,19 +286,19 @@ motion:
# Increasing this value will prevent smaller areas of motion from being detected. Decreasing will
# make motion detection more sensitive to smaller moving objects.
# As a rule of thumb:
# - 15 - high sensitivity
# - 10 - high sensitivity
# - 30 - medium sensitivity
# - 50 - low sensitivity
contour_area: 15
contour_area: 10
# Optional: Alpha value passed to cv2.accumulateWeighted when averaging frames to determine the background (default: shown below)
# Higher values mean the current frame impacts the average a lot, and a new object will be averaged into the background faster.
# Low values will cause things like moving shadows to be detected as motion for longer.
# https://www.geeksforgeeks.org/background-subtraction-in-an-image-using-concept-of-running-average/
frame_alpha: 0.02
frame_alpha: 0.01
# Optional: Height of the resized motion frame (default: 50)
# Higher values will result in more granular motion detection at the expense of higher CPU usage.
# Lower values result in less CPU, but small changes may not register as motion.
frame_height: 50
frame_height: 100
# Optional: motion mask
# NOTE: see docs for more detailed info on creating masks
mask: 0,900,1080,900,1080,1920,0,1920

View File

@ -187,7 +187,7 @@ class RecordConfig(FrigateBaseModel):
class MotionConfig(FrigateBaseModel):
threshold: int = Field(
default=30,
default=20,
title="Motion detection threshold (1-255).",
ge=1,
le=255,
@ -198,7 +198,7 @@ class MotionConfig(FrigateBaseModel):
improve_contrast: bool = Field(default=True, title="Improve Contrast")
contour_area: Optional[int] = Field(default=10, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.02, title="Frame Alpha")
frame_alpha: float = Field(default=0.01, title="Frame Alpha")
frame_height: Optional[int] = Field(default=100, title="Frame Height")
mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask."

View File

@ -15,7 +15,11 @@ class ImprovedMotionDetector(MotionDetector):
improve_contrast,
threshold,
contour_area,
clipLimit=2.0,
tileGridSize=(2, 2),
name="improved",
):
self.name = name
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0] / config.frame_height
@ -38,7 +42,7 @@ class ImprovedMotionDetector(MotionDetector):
self.improve_contrast = improve_contrast
self.threshold = threshold
self.contour_area = contour_area
self.clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
self.clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize)
def detect(self, frame):
motion_boxes = []
@ -52,12 +56,21 @@ class ImprovedMotionDetector(MotionDetector):
interpolation=cv2.INTER_LINEAR,
)
if self.save_images:
resized_saved = resized_frame.copy()
resized_frame = cv2.GaussianBlur(resized_frame, (3, 3), cv2.BORDER_DEFAULT)
if self.save_images:
blurred_saved = resized_frame.copy()
# Improve contrast
if self.improve_contrast.value:
resized_frame = self.clahe.apply(resized_frame)
if self.save_images:
contrasted_saved = resized_frame.copy()
# mask frame
resized_frame[self.mask] = [255]
@ -119,8 +132,19 @@ class ImprovedMotionDetector(MotionDetector):
(0, 0, 255),
2,
)
frames = [
cv2.cvtColor(resized_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(blurred_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(contrasted_saved, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(frameDelta, cv2.COLOR_GRAY2BGR),
cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR),
thresh_dilated,
]
cv2.imwrite(
f"debug/frames/improved-{self.frame_counter}.jpg", thresh_dilated
f"debug/frames/{self.name}-{self.frame_counter}.jpg",
cv2.hconcat(frames)
if self.frame_shape[0] > self.frame_shape[1]
else cv2.vconcat(frames),
)
if len(motion_boxes) > 0: