Implement enchrichments events per second graph (#17436)

* Cleanup existing naming

* Add face recognitions per second

* Add lpr fps

* Add all eps

* Clean up line graph

* Translations

* Change wording

* Fix incorrect access

* Don't require plates

* Add comment

* Fix
This commit is contained in:
Nicolas Mowen 2025-03-28 17:13:35 -06:00 committed by GitHub
parent b14abffea3
commit 9e8b85a957
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 233 additions and 53 deletions

View File

@ -24,6 +24,7 @@ from frigate.comms.event_metadata_updater import (
from frigate.config.camera.camera import CameraTypeEnum
from frigate.const import CLIPS_DIR
from frigate.embeddings.onnx.lpr_embedding import LPR_EMBEDDING_SIZE
from frigate.util.builtin import EventsPerSecond
from frigate.util.image import area
logger = logging.getLogger(__name__)
@ -34,11 +35,12 @@ WRITE_DEBUG_IMAGES = False
class LicensePlateProcessingMixin:
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.plates_rec_second = EventsPerSecond()
self.plates_rec_second.start()
self.plates_det_second = EventsPerSecond()
self.plates_det_second.start()
self.event_metadata_publisher = EventMetadataPublisher()
self.ctc_decoder = CTCDecoder()
self.batch_size = 6
# Detection specific parameters
@ -947,15 +949,17 @@ class LicensePlateProcessingMixin:
"""
Update inference metrics.
"""
self.metrics.yolov9_lpr_fps.value = (
self.metrics.yolov9_lpr_fps.value * 9 + duration
self.metrics.yolov9_lpr_speed.value = (
self.metrics.yolov9_lpr_speed.value * 9 + duration
) / 10
def __update_lpr_metrics(self, duration: float) -> None:
"""
Update inference metrics.
"""
self.metrics.alpr_pps.value = (self.metrics.alpr_pps.value * 9 + duration) / 10
self.metrics.alpr_speed.value = (
self.metrics.alpr_speed.value * 9 + duration
) / 10
def _generate_plate_event(self, camera: str, plate: str, plate_score: float) -> str:
"""Generate a unique ID for a plate event based on camera and text."""
@ -982,6 +986,8 @@ class LicensePlateProcessingMixin:
self, obj_data: dict[str, any], frame: np.ndarray, dedicated_lpr: bool = False
):
"""Look for license plates in image."""
self.metrics.alpr_pps.value = self.plates_rec_second.eps()
self.metrics.yolov9_lpr_pps.value = self.plates_det_second.eps()
camera = obj_data if dedicated_lpr else obj_data["camera"]
current_time = int(datetime.datetime.now().timestamp())
@ -1011,6 +1017,7 @@ class LicensePlateProcessingMixin:
logger.debug(
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
)
self.plates_det_second.update()
self.__update_yolov9_metrics(
datetime.datetime.now().timestamp() - yolov9_start
)
@ -1093,6 +1100,7 @@ class LicensePlateProcessingMixin:
logger.debug(
f"{camera}: YOLOv9 LPD inference time: {(datetime.datetime.now().timestamp() - yolov9_start) * 1000:.2f} ms"
)
self.plates_det_second.update()
self.__update_yolov9_metrics(
datetime.datetime.now().timestamp() - yolov9_start
)
@ -1197,6 +1205,7 @@ class LicensePlateProcessingMixin:
license_plates, confidences, areas = self._process_license_plate(
camera, id, license_plate_frame
)
self.plates_rec_second.update()
self.__update_lpr_metrics(datetime.datetime.now().timestamp() - start)
if license_plates:

View File

@ -24,6 +24,7 @@ from frigate.data_processing.common.face.model import (
FaceNetRecognizer,
FaceRecognizer,
)
from frigate.util.builtin import EventsPerSecond
from frigate.util.image import area
from ..types import DataProcessorMetrics
@ -51,6 +52,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
self.requires_face_detection = "face" not in self.config.objects.all_objects
self.person_face_history: dict[str, list[tuple[str, float, int]]] = {}
self.recognizer: FaceRecognizer | None = None
self.faces_per_second = EventsPerSecond()
download_path = os.path.join(MODEL_CACHE_DIR, "facedet")
self.model_files = {
@ -103,6 +105,7 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
score_threshold=0.5,
nms_threshold=0.3,
)
self.faces_per_second.start()
def __detect_face(
self, input: np.ndarray, threshold: float
@ -146,12 +149,15 @@ class FaceRealTimeProcessor(RealTimeProcessorApi):
return face
def __update_metrics(self, duration: float) -> None:
self.metrics.face_rec_fps.value = (
self.metrics.face_rec_fps.value * 9 + duration
self.faces_per_second.update()
self.metrics.face_rec_speed.value = (
self.metrics.face_rec_speed.value * 9 + duration
) / 10
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray):
"""Look for faces in image."""
self.metrics.face_rec_fps.value = self.faces_per_second.eps()
if not self.config.cameras[obj_data["camera"]].face_recognition.enabled:
return

View File

@ -6,18 +6,26 @@ from multiprocessing.sharedctypes import Synchronized
class DataProcessorMetrics:
image_embeddings_fps: Synchronized
text_embeddings_sps: Synchronized
image_embeddings_speed: Synchronized
text_embeddings_speed: Synchronized
face_rec_speed: Synchronized
face_rec_fps: Synchronized
alpr_speed: Synchronized
alpr_pps: Synchronized
yolov9_lpr_fps: Synchronized
yolov9_lpr_speed: Synchronized
yolov9_lpr_pps: Synchronized
def __init__(self):
self.image_embeddings_fps = mp.Value("d", 0.01)
self.text_embeddings_sps = mp.Value("d", 0.01)
self.face_rec_fps = mp.Value("d", 0.01)
self.alpr_pps = mp.Value("d", 0.01)
self.yolov9_lpr_fps = mp.Value("d", 0.01)
self.image_embeddings_speed = mp.Value("d", 0.01)
self.image_embeddings_eps = mp.Value("d", 0.0)
self.text_embeddings_speed = mp.Value("d", 0.01)
self.text_embeddings_eps = mp.Value("d", 0.0)
self.face_rec_speed = mp.Value("d", 0.01)
self.face_rec_fps = mp.Value("d", 0.0)
self.alpr_speed = mp.Value("d", 0.01)
self.alpr_pps = mp.Value("d", 0.0)
self.yolov9_lpr_speed = mp.Value("d", 0.01)
self.yolov9_lpr_pps = mp.Value("d", 0.0)
class DataProcessorModelRunner:

View File

@ -21,7 +21,7 @@ from frigate.data_processing.types import DataProcessorMetrics
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
from frigate.models import Event
from frigate.types import ModelStatusTypesEnum
from frigate.util.builtin import serialize
from frigate.util.builtin import EventsPerSecond, serialize
from frigate.util.path import get_event_thumbnail_bytes
from .onnx.jina_v1_embedding import JinaV1ImageEmbedding, JinaV1TextEmbedding
@ -75,6 +75,11 @@ class Embeddings:
self.metrics = metrics
self.requestor = InterProcessRequestor()
self.image_eps = EventsPerSecond()
self.image_eps.start()
self.text_eps = EventsPerSecond()
self.text_eps.start()
self.reindex_lock = threading.Lock()
self.reindex_thread = None
self.reindex_running = False
@ -120,6 +125,10 @@ class Embeddings:
device="GPU" if config.semantic_search.model_size == "large" else "CPU",
)
def update_stats(self) -> None:
self.metrics.image_embeddings_eps = self.image_eps.eps()
self.metrics.text_embeddings_eps = self.text_eps.eps()
def get_model_definitions(self):
# Version-specific models
if self.config.semantic_search.model == SemanticSearchModelEnum.jinav2:
@ -175,9 +184,10 @@ class Embeddings:
)
duration = datetime.datetime.now().timestamp() - start
self.metrics.image_embeddings_fps.value = (
self.metrics.image_embeddings_fps.value * 9 + duration
self.metrics.image_embeddings_speed.value = (
self.metrics.image_embeddings_speed.value * 9 + duration
) / 10
self.image_eps.update()
return embedding
@ -199,6 +209,7 @@ class Embeddings:
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
self.image_eps.update()
self.db.execute_sql(
"""
@ -209,8 +220,8 @@ class Embeddings:
)
duration = datetime.datetime.now().timestamp() - start
self.metrics.text_embeddings_sps.value = (
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
self.metrics.text_embeddings_speed.value = (
self.metrics.text_embeddings_speed.value * 9 + (duration / len(ids))
) / 10
return embeddings
@ -231,9 +242,10 @@ class Embeddings:
)
duration = datetime.datetime.now().timestamp() - start
self.metrics.text_embeddings_sps.value = (
self.metrics.text_embeddings_sps.value * 9 + duration
self.metrics.text_embeddings_speed.value = (
self.metrics.text_embeddings_speed.value * 9 + duration
) / 10
self.text_eps.update()
return embedding
@ -254,6 +266,7 @@ class Embeddings:
for i in range(len(ids)):
items.append(ids[i])
items.append(serialize(embeddings[i]))
self.text_eps.update()
self.db.execute_sql(
"""
@ -264,8 +277,8 @@ class Embeddings:
)
duration = datetime.datetime.now().timestamp() - start
self.metrics.text_embeddings_sps.value = (
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
self.metrics.text_embeddings_speed.value = (
self.metrics.text_embeddings_speed.value * 9 + (duration / len(ids))
) / 10
return embeddings

View File

@ -236,6 +236,7 @@ class EmbeddingMaintainer(threading.Thread):
return
camera_config = self.config.cameras[camera]
self.embeddings.update_stats()
# no need to process updated objects if face recognition, lpr, genai are disabled
if not camera_config.genai.enabled and len(self.realtime_processors) == 0:

View File

@ -293,27 +293,42 @@ def stats_snapshot(
stats["embeddings"].update(
{
"image_embedding_speed": round(
embeddings_metrics.image_embeddings_fps.value * 1000, 2
embeddings_metrics.image_embeddings_speed.value * 1000, 2
),
"image_embedding": round(
embeddings_metrics.image_embeddings_eps.value, 2
),
"text_embedding_speed": round(
embeddings_metrics.text_embeddings_sps.value * 1000, 2
embeddings_metrics.text_embeddings_speed.value * 1000, 2
),
"text_embedding": round(
embeddings_metrics.text_embeddings_eps.value, 2
),
}
)
if config.face_recognition.enabled:
stats["embeddings"]["face_recognition_speed"] = round(
embeddings_metrics.face_rec_fps.value * 1000, 2
embeddings_metrics.face_rec_speed.value * 1000, 2
)
stats["embeddings"]["face_recognition"] = round(
embeddings_metrics.face_rec_fps.value, 2
)
if config.lpr.enabled:
stats["embeddings"]["plate_recognition_speed"] = round(
embeddings_metrics.alpr_pps.value * 1000, 2
embeddings_metrics.alpr_speed.value * 1000, 2
)
stats["embeddings"]["plate_recognition"] = round(
embeddings_metrics.alpr_pps.value, 2
)
if "license_plate" not in config.objects.all_objects:
if embeddings_metrics.yolov9_lpr_pps.value > 0.0:
stats["embeddings"]["yolov9_plate_detection_speed"] = round(
embeddings_metrics.yolov9_lpr_fps.value * 1000, 2
embeddings_metrics.yolov9_lpr_speed.value * 1000, 2
)
stats["embeddings"]["yolov9_plate_detection"] = round(
embeddings_metrics.yolov9_lpr_pps.value, 2
)
get_processing_stats(config, stats, hwaccel_errors)

View File

@ -3,7 +3,7 @@
"cameras": "Cameras Stats - Frigate",
"storage": "Storage Stats - Frigate",
"general": "General Stats - Frigate",
"features": "Features Stats - Frigate",
"enrichments": "Enrichments Stats - Frigate",
"logs": {
"frigate": "Frigate Logs - Frigate",
"go2rtc": "Go2RTC Logs - Frigate",
@ -144,8 +144,9 @@
"healthy": "System is healthy",
"reindexingEmbeddings": "Reindexing embeddings ({{processed}}% complete)"
},
"features": {
"title": "Features",
"enrichments": {
"title": "Enrichments",
"infPerSecond": "Inferences Per Second",
"embeddings": {
"image_embedding_speed": "Image Embedding Speed",
"face_embedding_speed": "Face Embedding Speed",

View File

@ -143,3 +143,118 @@ export function CameraLineGraph({
</div>
);
}
type EventsPerSecondLineGraphProps = {
graphId: string;
unit: string;
name: string;
updateTimes: number[];
data: ApexAxisChartSeries;
};
export function EventsPerSecondsLineGraph({
graphId,
unit,
name,
updateTimes,
data,
}: EventsPerSecondLineGraphProps) {
const { data: config } = useSWR<FrigateConfig>("config", {
revalidateOnFocus: false,
});
const { theme, systemTheme } = useTheme();
const lastValue = useMemo<number>(
// @ts-expect-error y is valid
() => data[0].data[data[0].data.length - 1]?.y ?? 0,
[data],
);
const formatTime = useCallback(
(val: unknown) => {
return formatUnixTimestampToDateTime(
updateTimes[Math.round(val as number) - 1],
{
timezone: config?.ui.timezone,
strftime_fmt:
config?.ui.time_format == "24hour" ? "%H:%M" : "%I:%M %p",
},
);
},
[config, updateTimes],
);
const options = useMemo(() => {
return {
chart: {
id: graphId,
selection: {
enabled: false,
},
toolbar: {
show: false,
},
zoom: {
enabled: false,
},
},
colors: GRAPH_COLORS,
grid: {
show: false,
},
legend: {
show: false,
},
dataLabels: {
enabled: false,
},
stroke: {
width: 1,
},
tooltip: {
theme: systemTheme || theme,
},
markers: {
size: 0,
},
xaxis: {
tickAmount: isMobileOnly ? 2 : 3,
tickPlacement: "on",
labels: {
rotate: 0,
formatter: formatTime,
},
axisBorder: {
show: false,
},
axisTicks: {
show: false,
},
},
yaxis: {
show: true,
labels: {
formatter: (val: number) => Math.ceil(val).toString(),
},
min: 0,
},
} as ApexCharts.ApexOptions;
}, [graphId, systemTheme, theme, formatTime]);
useEffect(() => {
ApexCharts.exec(graphId, "updateOptions", options, true, true);
}, [graphId, options]);
return (
<div className="flex w-full flex-col">
<div className="flex items-center gap-1">
<div className="text-xs text-muted-foreground">{name}</div>
<div className="text-xs text-primary">
{lastValue}
{unit}
</div>
</div>
<Chart type="line" options={options} series={data} height="120" />
</div>
);
}

View File

@ -14,10 +14,10 @@ import CameraMetrics from "@/views/system/CameraMetrics";
import { useHashState } from "@/hooks/use-overlay-state";
import { Toaster } from "@/components/ui/sonner";
import { FrigateConfig } from "@/types/frigateConfig";
import FeatureMetrics from "@/views/system/FeatureMetrics";
import EnrichmentMetrics from "@/views/system/EnrichmentMetrics";
import { useTranslation } from "react-i18next";
const allMetrics = ["general", "features", "storage", "cameras"] as const;
const allMetrics = ["general", "enrichments", "storage", "cameras"] as const;
type SystemMetric = (typeof allMetrics)[number];
function System() {
@ -34,7 +34,7 @@ function System() {
!config?.lpr.enabled &&
!config?.face_recognition.enabled
) {
const index = metrics.indexOf("features");
const index = metrics.indexOf("enrichments");
metrics.splice(index, 1);
}
@ -89,7 +89,7 @@ function System() {
aria-label={`Select ${item}`}
>
{item == "general" && <LuActivity className="size-4" />}
{item == "features" && <LuSearchCode className="size-4" />}
{item == "enrichments" && <LuSearchCode className="size-4" />}
{item == "storage" && <LuHardDrive className="size-4" />}
{item == "cameras" && <FaVideo className="size-4" />}
{isDesktop && (
@ -122,8 +122,8 @@ function System() {
setLastUpdated={setLastUpdated}
/>
)}
{page == "features" && (
<FeatureMetrics
{page == "enrichments" && (
<EnrichmentMetrics
lastUpdated={lastUpdated}
setLastUpdated={setLastUpdated}
/>

View File

@ -1,5 +1,5 @@
import { useFrigateStats } from "@/api/ws";
import { CameraLineGraph } from "@/components/graph/CameraGraph";
import { CameraLineGraph } from "@/components/graph/LineGraph";
import CameraInfoDialog from "@/components/overlay/CameraInfoDialog";
import { Skeleton } from "@/components/ui/skeleton";
import { FrigateConfig } from "@/types/frigateConfig";

View File

@ -7,15 +7,16 @@ import { Skeleton } from "@/components/ui/skeleton";
import { ThresholdBarGraph } from "@/components/graph/SystemGraph";
import { cn } from "@/lib/utils";
import { useTranslation } from "react-i18next";
import { EventsPerSecondsLineGraph } from "@/components/graph/LineGraph";
type FeatureMetricsProps = {
type EnrichmentMetricsProps = {
lastUpdated: number;
setLastUpdated: (last: number) => void;
};
export default function FeatureMetrics({
export default function EnrichmentMetrics({
lastUpdated,
setLastUpdated,
}: FeatureMetricsProps) {
}: EnrichmentMetricsProps) {
// stats
const { t } = useTranslation(["views/system"]);
@ -102,15 +103,26 @@ export default function FeatureMetrics({
{embeddingInferenceTimeSeries.map((series) => (
<div className="rounded-lg bg-background_alt p-2.5 md:rounded-2xl">
<div className="mb-5 capitalize">{series.name}</div>
<ThresholdBarGraph
key={series.name}
graphId={`${series.name}-inference`}
name={series.name}
unit="ms"
threshold={EmbeddingThreshold}
updateTimes={updateTimes}
data={[series]}
/>
{series.name.endsWith("Speed") ? (
<ThresholdBarGraph
key={series.name}
graphId={`${series.name}-inference`}
name={series.name}
unit="ms"
threshold={EmbeddingThreshold}
updateTimes={updateTimes}
data={[series]}
/>
) : (
<EventsPerSecondsLineGraph
key={series.name}
graphId={`${series.name}-fps`}
unit=""
name={t("enrichments.infPerSecond")}
updateTimes={updateTimes}
data={[series]}
/>
)}
</div>
))}
</>