mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-09 00:17:00 +01:00
Add metrics page for embeddings and face / license plate processing times (#15818)
* Get stats for embeddings inferences * cleanup embeddings inferences * Enable UI for feature metrics * Change threshold * Fix check * Update python for actions * Set python version * Ignore type for now
This commit is contained in:
parent
0c13227f7d
commit
a6ae208fe7
2
.github/workflows/pull_request.yml
vendored
2
.github/workflows/pull_request.yml
vendored
@ -6,7 +6,7 @@ on:
|
||||
- "docs/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.9
|
||||
DEFAULT_PYTHON: 3.11
|
||||
|
||||
jobs:
|
||||
build_devcontainer:
|
||||
|
@ -41,6 +41,7 @@ from frigate.const import (
|
||||
)
|
||||
from frigate.db.sqlitevecq import SqliteVecQueueDatabase
|
||||
from frigate.embeddings import EmbeddingsContext, manage_embeddings
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.events.audio import AudioProcessor
|
||||
from frigate.events.cleanup import EventCleanup
|
||||
from frigate.events.external import ExternalEventProcessor
|
||||
@ -89,6 +90,9 @@ class FrigateApp:
|
||||
self.detection_shms: list[mp.shared_memory.SharedMemory] = []
|
||||
self.log_queue: Queue = mp.Queue()
|
||||
self.camera_metrics: dict[str, CameraMetrics] = {}
|
||||
self.embeddings_metrics: EmbeddingsMetrics | None = (
|
||||
EmbeddingsMetrics() if config.semantic_search.enabled else None
|
||||
)
|
||||
self.ptz_metrics: dict[str, PTZMetrics] = {}
|
||||
self.processes: dict[str, int] = {}
|
||||
self.embeddings: Optional[EmbeddingsContext] = None
|
||||
@ -235,7 +239,10 @@ class FrigateApp:
|
||||
embedding_process = util.Process(
|
||||
target=manage_embeddings,
|
||||
name="embeddings_manager",
|
||||
args=(self.config,),
|
||||
args=(
|
||||
self.config,
|
||||
self.embeddings_metrics,
|
||||
),
|
||||
)
|
||||
embedding_process.daemon = True
|
||||
self.embedding_process = embedding_process
|
||||
@ -497,7 +504,11 @@ class FrigateApp:
|
||||
self.stats_emitter = StatsEmitter(
|
||||
self.config,
|
||||
stats_init(
|
||||
self.config, self.camera_metrics, self.detectors, self.processes
|
||||
self.config,
|
||||
self.camera_metrics,
|
||||
self.embeddings_metrics,
|
||||
self.detectors,
|
||||
self.processes,
|
||||
),
|
||||
self.stop_event,
|
||||
)
|
||||
|
@ -21,12 +21,13 @@ from frigate.util.builtin import serialize
|
||||
from frigate.util.services import listen
|
||||
|
||||
from .maintainer import EmbeddingMaintainer
|
||||
from .types import EmbeddingsMetrics
|
||||
from .util import ZScoreNormalization
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def manage_embeddings(config: FrigateConfig) -> None:
|
||||
def manage_embeddings(config: FrigateConfig, metrics: EmbeddingsMetrics) -> None:
|
||||
# Only initialize embeddings if semantic search is enabled
|
||||
if not config.semantic_search.enabled:
|
||||
return
|
||||
@ -60,6 +61,7 @@ def manage_embeddings(config: FrigateConfig) -> None:
|
||||
maintainer = EmbeddingMaintainer(
|
||||
db,
|
||||
config,
|
||||
metrics,
|
||||
stop_event,
|
||||
)
|
||||
maintainer.start()
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""SQLite-vec embeddings database."""
|
||||
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
@ -21,6 +22,7 @@ from frigate.types import ModelStatusTypesEnum
|
||||
from frigate.util.builtin import serialize
|
||||
|
||||
from .functions.onnx import GenericONNXEmbedding, ModelTypeEnum
|
||||
from .types import EmbeddingsMetrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -59,9 +61,15 @@ def get_metadata(event: Event) -> dict:
|
||||
class Embeddings:
|
||||
"""SQLite-vec embeddings database."""
|
||||
|
||||
def __init__(self, config: FrigateConfig, db: SqliteVecQueueDatabase) -> None:
|
||||
def __init__(
|
||||
self,
|
||||
config: FrigateConfig,
|
||||
db: SqliteVecQueueDatabase,
|
||||
metrics: EmbeddingsMetrics,
|
||||
) -> None:
|
||||
self.config = config
|
||||
self.db = db
|
||||
self.metrics = metrics
|
||||
self.requestor = InterProcessRequestor()
|
||||
|
||||
# Create tables if they don't exist
|
||||
@ -173,6 +181,7 @@ class Embeddings:
|
||||
@param: thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# Convert thumbnail bytes to PIL Image
|
||||
embedding = self.vision_embedding([thumbnail])[0]
|
||||
|
||||
@ -185,6 +194,11 @@ class Embeddings:
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.image_embeddings_fps.value = (
|
||||
self.metrics.image_embeddings_fps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_embed_thumbnail(
|
||||
@ -195,6 +209,7 @@ class Embeddings:
|
||||
@param: event_thumbs Map of Event IDs in DB to thumbnail bytes in jpg format
|
||||
@param: upsert If embedding should be upserted into vec DB
|
||||
"""
|
||||
start = datetime.datetime.now().timestamp()
|
||||
ids = list(event_thumbs.keys())
|
||||
embeddings = self.vision_embedding(list(event_thumbs.values()))
|
||||
|
||||
@ -213,11 +228,17 @@ class Embeddings:
|
||||
items,
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
|
||||
) / 10
|
||||
|
||||
return embeddings
|
||||
|
||||
def embed_description(
|
||||
self, event_id: str, description: str, upsert: bool = True
|
||||
) -> ndarray:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
embedding = self.text_embedding([description])[0]
|
||||
|
||||
if upsert:
|
||||
@ -229,11 +250,17 @@ class Embeddings:
|
||||
(event_id, serialize(embedding)),
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
return embedding
|
||||
|
||||
def batch_embed_description(
|
||||
self, event_descriptions: dict[str, str], upsert: bool = True
|
||||
) -> ndarray:
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# upsert embeddings one by one to avoid token limit
|
||||
embeddings = []
|
||||
|
||||
@ -256,6 +283,11 @@ class Embeddings:
|
||||
items,
|
||||
)
|
||||
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.text_embeddings_sps.value = (
|
||||
self.metrics.text_embeddings_sps.value * 9 + (duration / len(ids))
|
||||
) / 10
|
||||
|
||||
return embeddings
|
||||
|
||||
def reindex(self) -> None:
|
||||
|
@ -1,6 +1,7 @@
|
||||
"""Maintain embeddings in SQLite-vec."""
|
||||
|
||||
import base64
|
||||
import datetime
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
@ -41,6 +42,7 @@ from frigate.util.image import SharedMemoryFrameManager, area, calculate_region
|
||||
from frigate.util.model import FaceClassificationModel
|
||||
|
||||
from .embeddings import Embeddings
|
||||
from .types import EmbeddingsMetrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -54,11 +56,13 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
self,
|
||||
db: SqliteQueueDatabase,
|
||||
config: FrigateConfig,
|
||||
metrics: EmbeddingsMetrics,
|
||||
stop_event: MpEvent,
|
||||
) -> None:
|
||||
super().__init__(name="embeddings_maintainer")
|
||||
self.config = config
|
||||
self.embeddings = Embeddings(config, db)
|
||||
self.metrics = metrics
|
||||
self.embeddings = Embeddings(config, db, metrics)
|
||||
|
||||
# Check if we need to re-index events
|
||||
if config.semantic_search.reindex:
|
||||
@ -135,7 +139,8 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
)
|
||||
elif topic == EmbeddingsRequestEnum.generate_search.value:
|
||||
return serialize(
|
||||
self.embeddings.text_embedding([data])[0], pack=False
|
||||
self.embeddings.embed_description("", data, upsert=False),
|
||||
pack=False,
|
||||
)
|
||||
elif topic == EmbeddingsRequestEnum.register_face.value:
|
||||
if not self.face_recognition_enabled:
|
||||
@ -219,10 +224,24 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
return
|
||||
|
||||
if self.face_recognition_enabled:
|
||||
self._process_face(data, yuv_frame)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
processed = self._process_face(data, yuv_frame)
|
||||
|
||||
if processed:
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.face_rec_fps.value = (
|
||||
self.metrics.face_rec_fps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
if self.lpr_config.enabled:
|
||||
self._process_license_plate(data, yuv_frame)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
processed = self._process_license_plate(data, yuv_frame)
|
||||
|
||||
if processed:
|
||||
duration = datetime.datetime.now().timestamp() - start
|
||||
self.metrics.alpr_pps.value = (
|
||||
self.metrics.alpr_pps.value * 9 + duration
|
||||
) / 10
|
||||
|
||||
# no need to save our own thumbnails if genai is not enabled
|
||||
# or if the object has become stationary
|
||||
@ -402,14 +421,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
return face
|
||||
|
||||
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
|
||||
def _process_face(self, obj_data: dict[str, any], frame: np.ndarray) -> bool:
|
||||
"""Look for faces in image."""
|
||||
id = obj_data["id"]
|
||||
|
||||
# don't run for non person objects
|
||||
if obj_data.get("label") != "person":
|
||||
logger.debug("Not a processing face for non person object.")
|
||||
return
|
||||
return False
|
||||
|
||||
# don't overwrite sub label for objects that have a sub label
|
||||
# that is not a face
|
||||
@ -417,7 +436,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
logger.debug(
|
||||
f"Not processing face due to existing sub label: {obj_data.get('sub_label')}."
|
||||
)
|
||||
return
|
||||
return False
|
||||
|
||||
face: Optional[dict[str, any]] = None
|
||||
|
||||
@ -426,7 +445,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
person_box = obj_data.get("box")
|
||||
|
||||
if not person_box:
|
||||
return None
|
||||
return False
|
||||
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
||||
left, top, right, bottom = person_box
|
||||
@ -435,7 +454,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
if not face_box:
|
||||
logger.debug("Detected no faces for person object.")
|
||||
return
|
||||
return False
|
||||
|
||||
margin = int((face_box[2] - face_box[0]) * 0.25)
|
||||
face_frame = person[
|
||||
@ -451,7 +470,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
# don't run for object without attributes
|
||||
if not obj_data.get("current_attributes"):
|
||||
logger.debug("No attributes to parse.")
|
||||
return
|
||||
return False
|
||||
|
||||
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
|
||||
for attr in attributes:
|
||||
@ -463,14 +482,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
# no faces detected in this frame
|
||||
if not face:
|
||||
return
|
||||
return False
|
||||
|
||||
face_box = face.get("box")
|
||||
|
||||
# check that face is valid
|
||||
if not face_box or area(face_box) < self.config.face_recognition.min_area:
|
||||
logger.debug(f"Invalid face box {face}")
|
||||
return
|
||||
return False
|
||||
|
||||
face_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
|
||||
margin = int((face_box[2] - face_box[0]) * 0.25)
|
||||
@ -487,7 +506,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
res = self.face_classifier.classify_face(face_frame)
|
||||
|
||||
if not res:
|
||||
return
|
||||
return False
|
||||
|
||||
sub_label, score = res
|
||||
|
||||
@ -512,13 +531,13 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
logger.debug(
|
||||
f"Recognized face distance {score} is less than threshold {self.config.face_recognition.threshold}"
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
if id in self.detected_faces and face_score <= self.detected_faces[id]:
|
||||
logger.debug(
|
||||
f"Recognized face distance {score} and overall score {face_score} is less than previous overall face score ({self.detected_faces.get(id)})."
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
resp = requests.post(
|
||||
f"{FRIGATE_LOCALHOST}/api/events/{id}/sub_label",
|
||||
@ -532,6 +551,8 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
if resp.status_code == 200:
|
||||
self.detected_faces[id] = face_score
|
||||
|
||||
return True
|
||||
|
||||
def _detect_license_plate(self, input: np.ndarray) -> tuple[int, int, int, int]:
|
||||
"""Return the dimensions of the input image as [x, y, width, height]."""
|
||||
height, width = input.shape[:2]
|
||||
@ -539,19 +560,19 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
def _process_license_plate(
|
||||
self, obj_data: dict[str, any], frame: np.ndarray
|
||||
) -> None:
|
||||
) -> bool:
|
||||
"""Look for license plates in image."""
|
||||
id = obj_data["id"]
|
||||
|
||||
# don't run for non car objects
|
||||
if obj_data.get("label") != "car":
|
||||
logger.debug("Not a processing license plate for non car object.")
|
||||
return
|
||||
return False
|
||||
|
||||
# don't run for stationary car objects
|
||||
if obj_data.get("stationary") == True:
|
||||
logger.debug("Not a processing license plate for a stationary car object.")
|
||||
return
|
||||
return False
|
||||
|
||||
# don't overwrite sub label for objects that have a sub label
|
||||
# that is not a license plate
|
||||
@ -559,7 +580,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
logger.debug(
|
||||
f"Not processing license plate due to existing sub label: {obj_data.get('sub_label')}."
|
||||
)
|
||||
return
|
||||
return False
|
||||
|
||||
license_plate: Optional[dict[str, any]] = None
|
||||
|
||||
@ -568,7 +589,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
car_box = obj_data.get("box")
|
||||
|
||||
if not car_box:
|
||||
return None
|
||||
return False
|
||||
|
||||
rgb = cv2.cvtColor(frame, cv2.COLOR_YUV2RGB_I420)
|
||||
left, top, right, bottom = car_box
|
||||
@ -577,7 +598,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
if not license_plate:
|
||||
logger.debug("Detected no license plates for car object.")
|
||||
return
|
||||
return False
|
||||
|
||||
license_plate_frame = car[
|
||||
license_plate[1] : license_plate[3], license_plate[0] : license_plate[2]
|
||||
@ -587,7 +608,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
# don't run for object without attributes
|
||||
if not obj_data.get("current_attributes"):
|
||||
logger.debug("No attributes to parse.")
|
||||
return
|
||||
return False
|
||||
|
||||
attributes: list[dict[str, any]] = obj_data.get("current_attributes", [])
|
||||
for attr in attributes:
|
||||
@ -601,7 +622,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
|
||||
# no license plates detected in this frame
|
||||
if not license_plate:
|
||||
return
|
||||
return False
|
||||
|
||||
license_plate_box = license_plate.get("box")
|
||||
|
||||
@ -611,7 +632,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
or area(license_plate_box) < self.config.lpr.min_area
|
||||
):
|
||||
logger.debug(f"Invalid license plate box {license_plate}")
|
||||
return
|
||||
return False
|
||||
|
||||
license_plate_frame = cv2.cvtColor(frame, cv2.COLOR_YUV2BGR_I420)
|
||||
license_plate_frame = license_plate_frame[
|
||||
@ -640,7 +661,7 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
else:
|
||||
# no plates found
|
||||
logger.debug("No text detected")
|
||||
return
|
||||
return True
|
||||
|
||||
top_plate, top_char_confidences, top_area = (
|
||||
license_plates[0],
|
||||
@ -686,14 +707,14 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
f"length={len(top_plate)}, avg_conf={avg_confidence:.2f}, area={top_area} "
|
||||
f"vs Previous: length={len(prev_plate)}, avg_conf={prev_avg_confidence:.2f}, area={prev_area}"
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
# Check against minimum confidence threshold
|
||||
if avg_confidence < self.lpr_config.threshold:
|
||||
logger.debug(
|
||||
f"Average confidence {avg_confidence} is less than threshold ({self.lpr_config.threshold})"
|
||||
)
|
||||
return
|
||||
return True
|
||||
|
||||
# Determine subLabel based on known plates, use regex matching
|
||||
# Default to the detected plate, use label name if there's a match
|
||||
@ -723,6 +744,8 @@ class EmbeddingMaintainer(threading.Thread):
|
||||
"area": top_area,
|
||||
}
|
||||
|
||||
return True
|
||||
|
||||
def _create_thumbnail(self, yuv_frame, box, height=500) -> Optional[bytes]:
|
||||
"""Return jpg thumbnail of a region of the frame."""
|
||||
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2BGR_I420)
|
||||
|
17
frigate/embeddings/types.py
Normal file
17
frigate/embeddings/types.py
Normal file
@ -0,0 +1,17 @@
|
||||
"""Embeddings types."""
|
||||
|
||||
import multiprocessing as mp
|
||||
from multiprocessing.sharedctypes import Synchronized
|
||||
|
||||
|
||||
class EmbeddingsMetrics:
|
||||
image_embeddings_fps: Synchronized
|
||||
text_embeddings_sps: Synchronized
|
||||
face_rec_fps: Synchronized
|
||||
alpr_pps: Synchronized
|
||||
|
||||
def __init__(self):
|
||||
self.image_embeddings_fps = mp.Value("d", 0.01)
|
||||
self.text_embeddings_sps = mp.Value("d", 0.01)
|
||||
self.face_rec_fps = mp.Value("d", 0.01)
|
||||
self.alpr_pps = mp.Value("d", 0.01)
|
@ -1,5 +1,5 @@
|
||||
[mypy]
|
||||
python_version = 3.9
|
||||
python_version = 3.11
|
||||
show_error_codes = true
|
||||
follow_imports = normal
|
||||
ignore_missing_imports = true
|
||||
|
@ -26,7 +26,7 @@ class Service(ABC):
|
||||
self.__dict__["name"] = name
|
||||
|
||||
self.__manager = manager or ServiceManager.current()
|
||||
self.__lock = asyncio.Lock(loop=self.__manager._event_loop)
|
||||
self.__lock = asyncio.Lock(loop=self.__manager._event_loop) # type: ignore[call-arg]
|
||||
self.__manager._register(self)
|
||||
|
||||
@property
|
||||
|
@ -14,6 +14,7 @@ from requests.exceptions import RequestException
|
||||
from frigate.camera import CameraMetrics
|
||||
from frigate.config import FrigateConfig
|
||||
from frigate.const import CACHE_DIR, CLIPS_DIR, RECORD_DIR
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.object_detection import ObjectDetectProcess
|
||||
from frigate.types import StatsTrackingTypes
|
||||
from frigate.util.services import (
|
||||
@ -51,11 +52,13 @@ def get_latest_version(config: FrigateConfig) -> str:
|
||||
def stats_init(
|
||||
config: FrigateConfig,
|
||||
camera_metrics: dict[str, CameraMetrics],
|
||||
embeddings_metrics: EmbeddingsMetrics | None,
|
||||
detectors: dict[str, ObjectDetectProcess],
|
||||
processes: dict[str, int],
|
||||
) -> StatsTrackingTypes:
|
||||
stats_tracking: StatsTrackingTypes = {
|
||||
"camera_metrics": camera_metrics,
|
||||
"embeddings_metrics": embeddings_metrics,
|
||||
"detectors": detectors,
|
||||
"started": int(time.time()),
|
||||
"latest_frigate_version": get_latest_version(config),
|
||||
@ -279,6 +282,27 @@ def stats_snapshot(
|
||||
}
|
||||
stats["detection_fps"] = round(total_detection_fps, 2)
|
||||
|
||||
if config.semantic_search.enabled:
|
||||
embeddings_metrics = stats_tracking["embeddings_metrics"]
|
||||
stats["embeddings"] = {
|
||||
"image_embedding_speed": round(
|
||||
embeddings_metrics.image_embeddings_fps.value * 1000, 2
|
||||
),
|
||||
"text_embedding_speed": round(
|
||||
embeddings_metrics.text_embeddings_sps.value * 1000, 2
|
||||
),
|
||||
}
|
||||
|
||||
if config.face_recognition.enabled:
|
||||
stats["embeddings"]["face_recognition_speed"] = round(
|
||||
embeddings_metrics.face_rec_fps.value * 1000, 2
|
||||
)
|
||||
|
||||
if config.lpr.enabled:
|
||||
stats["embeddings"]["plate_recognition_speed"] = round(
|
||||
embeddings_metrics.alpr_pps.value * 1000, 2
|
||||
)
|
||||
|
||||
get_processing_stats(config, stats, hwaccel_errors)
|
||||
|
||||
stats["service"] = {
|
||||
|
@ -2,11 +2,13 @@ from enum import Enum
|
||||
from typing import TypedDict
|
||||
|
||||
from frigate.camera import CameraMetrics
|
||||
from frigate.embeddings.types import EmbeddingsMetrics
|
||||
from frigate.object_detection import ObjectDetectProcess
|
||||
|
||||
|
||||
class StatsTrackingTypes(TypedDict):
|
||||
camera_metrics: dict[str, CameraMetrics]
|
||||
embeddings_metrics: EmbeddingsMetrics | None
|
||||
detectors: dict[str, ObjectDetectProcess]
|
||||
started: int
|
||||
latest_frigate_version: str
|
||||
|
@ -309,7 +309,7 @@ function FaceAttempt({
|
||||
<div className="capitalize">{data.name}</div>
|
||||
<div
|
||||
className={cn(
|
||||
Number.parseFloat(data.score) > threshold
|
||||
Number.parseFloat(data.score) >= threshold
|
||||
? "text-success"
|
||||
: "text-danger",
|
||||
)}
|
||||
|
@ -1,12 +1,12 @@
|
||||
import useSWR from "swr";
|
||||
import { FrigateStats } from "@/types/stats";
|
||||
import { useEffect, useState } from "react";
|
||||
import { useEffect, useMemo, useState } from "react";
|
||||
import TimeAgo from "@/components/dynamic/TimeAgo";
|
||||
import { ToggleGroup, ToggleGroupItem } from "@/components/ui/toggle-group";
|
||||
import { isDesktop, isMobile } from "react-device-detect";
|
||||
import GeneralMetrics from "@/views/system/GeneralMetrics";
|
||||
import StorageMetrics from "@/views/system/StorageMetrics";
|
||||
import { LuActivity, LuHardDrive } from "react-icons/lu";
|
||||
import { LuActivity, LuHardDrive, LuSearchCode } from "react-icons/lu";
|
||||
import { FaVideo } from "react-icons/fa";
|
||||
import Logo from "@/components/Logo";
|
||||
import useOptimisticState from "@/hooks/use-optimistic-state";
|
||||
@ -14,11 +14,28 @@ import CameraMetrics from "@/views/system/CameraMetrics";
|
||||
import { useHashState } from "@/hooks/use-overlay-state";
|
||||
import { capitalizeFirstLetter } from "@/utils/stringUtil";
|
||||
import { Toaster } from "@/components/ui/sonner";
|
||||
import { FrigateConfig } from "@/types/frigateConfig";
|
||||
import FeatureMetrics from "@/views/system/FeatureMetrics";
|
||||
|
||||
const metrics = ["general", "storage", "cameras"] as const;
|
||||
type SystemMetric = (typeof metrics)[number];
|
||||
const allMetrics = ["general", "features", "storage", "cameras"] as const;
|
||||
type SystemMetric = (typeof allMetrics)[number];
|
||||
|
||||
function System() {
|
||||
const { data: config } = useSWR<FrigateConfig>("config", {
|
||||
revalidateOnFocus: false,
|
||||
});
|
||||
|
||||
const metrics = useMemo(() => {
|
||||
const metrics = [...allMetrics];
|
||||
|
||||
if (!config?.semantic_search.enabled) {
|
||||
const index = metrics.indexOf("features");
|
||||
metrics.splice(index, 1);
|
||||
}
|
||||
|
||||
return metrics;
|
||||
}, [config]);
|
||||
|
||||
// stats page
|
||||
|
||||
const [page, setPage] = useHashState<SystemMetric>();
|
||||
@ -67,6 +84,7 @@ function System() {
|
||||
aria-label={`Select ${item}`}
|
||||
>
|
||||
{item == "general" && <LuActivity className="size-4" />}
|
||||
{item == "features" && <LuSearchCode className="size-4" />}
|
||||
{item == "storage" && <LuHardDrive className="size-4" />}
|
||||
{item == "cameras" && <FaVideo className="size-4" />}
|
||||
{isDesktop && <div className="capitalize">{item}</div>}
|
||||
@ -96,6 +114,12 @@ function System() {
|
||||
setLastUpdated={setLastUpdated}
|
||||
/>
|
||||
)}
|
||||
{page == "features" && (
|
||||
<FeatureMetrics
|
||||
lastUpdated={lastUpdated}
|
||||
setLastUpdated={setLastUpdated}
|
||||
/>
|
||||
)}
|
||||
{page == "storage" && <StorageMetrics setLastUpdated={setLastUpdated} />}
|
||||
{page == "cameras" && (
|
||||
<CameraMetrics
|
||||
|
@ -18,6 +18,11 @@ export const InferenceThreshold = {
|
||||
error: 100,
|
||||
} as Threshold;
|
||||
|
||||
export const EmbeddingThreshold = {
|
||||
warning: 500,
|
||||
error: 1000,
|
||||
} as Threshold;
|
||||
|
||||
export const DetectorTempThreshold = {
|
||||
warning: 72,
|
||||
error: 80,
|
||||
|
@ -2,6 +2,7 @@ export interface FrigateStats {
|
||||
cameras: { [camera_name: string]: CameraStats };
|
||||
cpu_usages: { [pid: string]: CpuStats };
|
||||
detectors: { [detectorKey: string]: DetectorStats };
|
||||
embeddings?: EmbeddingsStats;
|
||||
gpu_usages?: { [gpuKey: string]: GpuStats };
|
||||
processes: { [processKey: string]: ExtraProcessStats };
|
||||
service: ServiceStats;
|
||||
@ -34,6 +35,13 @@ export type DetectorStats = {
|
||||
pid: number;
|
||||
};
|
||||
|
||||
export type EmbeddingsStats = {
|
||||
image_embedding_speed: number;
|
||||
face_embedding_speed: number;
|
||||
plate_recognition_speed: number;
|
||||
text_embedding_speed: number;
|
||||
};
|
||||
|
||||
export type ExtraProcessStats = {
|
||||
pid: number;
|
||||
};
|
||||
|
122
web/src/views/system/FeatureMetrics.tsx
Normal file
122
web/src/views/system/FeatureMetrics.tsx
Normal file
@ -0,0 +1,122 @@
|
||||
import useSWR from "swr";
|
||||
import { FrigateStats } from "@/types/stats";
|
||||
import { useEffect, useMemo, useState } from "react";
|
||||
import { useFrigateStats } from "@/api/ws";
|
||||
import { EmbeddingThreshold } from "@/types/graph";
|
||||
import { Skeleton } from "@/components/ui/skeleton";
|
||||
import { ThresholdBarGraph } from "@/components/graph/SystemGraph";
|
||||
import { cn } from "@/lib/utils";
|
||||
|
||||
type FeatureMetricsProps = {
|
||||
lastUpdated: number;
|
||||
setLastUpdated: (last: number) => void;
|
||||
};
|
||||
export default function FeatureMetrics({
|
||||
lastUpdated,
|
||||
setLastUpdated,
|
||||
}: FeatureMetricsProps) {
|
||||
// stats
|
||||
|
||||
const { data: initialStats } = useSWR<FrigateStats[]>(
|
||||
["stats/history", { keys: "embeddings,service" }],
|
||||
{
|
||||
revalidateOnFocus: false,
|
||||
},
|
||||
);
|
||||
|
||||
const [statsHistory, setStatsHistory] = useState<FrigateStats[]>([]);
|
||||
const updatedStats = useFrigateStats();
|
||||
|
||||
useEffect(() => {
|
||||
if (initialStats == undefined || initialStats.length == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (statsHistory.length == 0) {
|
||||
setStatsHistory(initialStats);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!updatedStats) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (updatedStats.service.last_updated > lastUpdated) {
|
||||
setStatsHistory([...statsHistory.slice(1), updatedStats]);
|
||||
setLastUpdated(Date.now() / 1000);
|
||||
}
|
||||
}, [initialStats, updatedStats, statsHistory, lastUpdated, setLastUpdated]);
|
||||
|
||||
// timestamps
|
||||
|
||||
const updateTimes = useMemo(
|
||||
() => statsHistory.map((stats) => stats.service.last_updated),
|
||||
[statsHistory],
|
||||
);
|
||||
|
||||
// features stats
|
||||
|
||||
const embeddingInferenceTimeSeries = useMemo(() => {
|
||||
if (!statsHistory) {
|
||||
return [];
|
||||
}
|
||||
|
||||
const series: {
|
||||
[key: string]: { name: string; data: { x: number; y: number }[] };
|
||||
} = {};
|
||||
|
||||
statsHistory.forEach((stats, statsIdx) => {
|
||||
if (!stats?.embeddings) {
|
||||
return;
|
||||
}
|
||||
|
||||
Object.entries(stats.embeddings).forEach(([rawKey, stat]) => {
|
||||
const key = rawKey.replaceAll("_", " ");
|
||||
|
||||
if (!(key in series)) {
|
||||
series[key] = { name: key, data: [] };
|
||||
}
|
||||
|
||||
series[key].data.push({ x: statsIdx + 1, y: stat });
|
||||
});
|
||||
});
|
||||
return Object.values(series);
|
||||
}, [statsHistory]);
|
||||
|
||||
return (
|
||||
<>
|
||||
<div className="scrollbar-container mt-4 flex size-full flex-col overflow-y-auto">
|
||||
<div className="text-sm font-medium text-muted-foreground">
|
||||
Features
|
||||
</div>
|
||||
<div
|
||||
className={cn(
|
||||
"mt-4 grid w-full grid-cols-1 gap-2 sm:grid-cols-3",
|
||||
embeddingInferenceTimeSeries && "sm:grid-cols-4",
|
||||
)}
|
||||
>
|
||||
{statsHistory.length != 0 ? (
|
||||
<>
|
||||
{embeddingInferenceTimeSeries.map((series) => (
|
||||
<div className="rounded-lg bg-background_alt p-2.5 md:rounded-2xl">
|
||||
<div className="mb-5 capitalize">{series.name}</div>
|
||||
<ThresholdBarGraph
|
||||
key={series.name}
|
||||
graphId={`${series.name}-inference`}
|
||||
name={series.name}
|
||||
unit="ms"
|
||||
threshold={EmbeddingThreshold}
|
||||
updateTimes={updateTimes}
|
||||
data={[series]}
|
||||
/>
|
||||
</div>
|
||||
))}
|
||||
</>
|
||||
) : (
|
||||
<Skeleton className="aspect-video w-full rounded-lg md:rounded-2xl" />
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
</>
|
||||
);
|
||||
}
|
Loading…
Reference in New Issue
Block a user