Implement common post_processing (#11408)

* implement common post_processing

* fix formatting

* rename yolonas to post_process_yolonas
This commit is contained in:
Marc Altmann 2024-05-17 18:50:45 +02:00 committed by GitHub
parent 97f5ba0145
commit a70dd02788
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 66 additions and 2 deletions

View File

@ -80,7 +80,7 @@ model:
# Valid values are nhwc or nchw (default: shown below)
input_tensor: nhwc
# Optional: Object detection model type, currently only used with the OpenVINO detector
# Valid values are ssd, yolox (default: shown below)
# Valid values are ssd, yolox, yolonas (default: shown below)
model_type: ssd
# Optional: Label name modifications. These are merged into the standard labelmap.
labelmap:

View File

@ -1,6 +1,10 @@
import logging
from abc import ABC, abstractmethod
import numpy as np
from frigate.detectors.detector_config import ModelTypeEnum
logger = logging.getLogger(__name__)
@ -9,8 +13,67 @@ class DetectionApi(ABC):
@abstractmethod
def __init__(self, detector_config):
pass
self.detector_config = detector_config
self.thresh = 0.5
self.height = detector_config.model.height
self.width = detector_config.model.width
@abstractmethod
def detect_raw(self, tensor_input):
pass
def post_process_yolonas(self, output):
"""
@param output: output of inference
expected shape: [np.array(1, N, 4), np.array(1, N, 80)]
where N depends on the input size e.g. N=2100 for 320x320 images
@return: best results: np.array(20, 6) where each row is
in this order (class_id, score, y1/height, x1/width, y2/height, x2/width)
"""
N = output[0].shape[1]
boxes = output[0].reshape(N, 4)
scores = output[1].reshape(N, 80)
class_ids = np.argmax(scores, axis=1)
scores = scores[np.arange(N), class_ids]
args_best = np.argwhere(scores > self.thresh)[:, 0]
num_matches = len(args_best)
if num_matches == 0:
return np.zeros((20, 6), np.float32)
elif num_matches > 20:
args_best20 = np.argpartition(scores[args_best], -20)[-20:]
args_best = args_best[args_best20]
boxes = boxes[args_best]
class_ids = class_ids[args_best]
scores = scores[args_best]
boxes = np.transpose(
np.vstack(
(
boxes[:, 1] / self.height,
boxes[:, 0] / self.width,
boxes[:, 3] / self.height,
boxes[:, 2] / self.width,
)
)
)
results = np.hstack(
(class_ids[..., np.newaxis], scores[..., np.newaxis], boxes)
)
return np.resize(results, (20, 6))
def post_process(self, output):
if self.detector_config.model.model_type == ModelTypeEnum.yolonas:
return self.yolonas(output)
else:
raise ValueError(
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
)

View File

@ -30,6 +30,7 @@ class InputTensorEnum(str, Enum):
class ModelTypeEnum(str, Enum):
ssd = "ssd"
yolox = "yolox"
yolonas = "yolonas"
class ModelConfig(BaseModel):