mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
Implement common post_processing (#11408)
* implement common post_processing * fix formatting * rename yolonas to post_process_yolonas
This commit is contained in:
parent
97f5ba0145
commit
a70dd02788
@ -80,7 +80,7 @@ model:
|
||||
# Valid values are nhwc or nchw (default: shown below)
|
||||
input_tensor: nhwc
|
||||
# Optional: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Valid values are ssd, yolox (default: shown below)
|
||||
# Valid values are ssd, yolox, yolonas (default: shown below)
|
||||
model_type: ssd
|
||||
# Optional: Label name modifications. These are merged into the standard labelmap.
|
||||
labelmap:
|
||||
|
@ -1,6 +1,10 @@
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
import numpy as np
|
||||
|
||||
from frigate.detectors.detector_config import ModelTypeEnum
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -9,8 +13,67 @@ class DetectionApi(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def __init__(self, detector_config):
|
||||
pass
|
||||
self.detector_config = detector_config
|
||||
self.thresh = 0.5
|
||||
self.height = detector_config.model.height
|
||||
self.width = detector_config.model.width
|
||||
|
||||
@abstractmethod
|
||||
def detect_raw(self, tensor_input):
|
||||
pass
|
||||
|
||||
def post_process_yolonas(self, output):
|
||||
"""
|
||||
@param output: output of inference
|
||||
expected shape: [np.array(1, N, 4), np.array(1, N, 80)]
|
||||
where N depends on the input size e.g. N=2100 for 320x320 images
|
||||
|
||||
@return: best results: np.array(20, 6) where each row is
|
||||
in this order (class_id, score, y1/height, x1/width, y2/height, x2/width)
|
||||
"""
|
||||
|
||||
N = output[0].shape[1]
|
||||
|
||||
boxes = output[0].reshape(N, 4)
|
||||
scores = output[1].reshape(N, 80)
|
||||
|
||||
class_ids = np.argmax(scores, axis=1)
|
||||
scores = scores[np.arange(N), class_ids]
|
||||
|
||||
args_best = np.argwhere(scores > self.thresh)[:, 0]
|
||||
|
||||
num_matches = len(args_best)
|
||||
if num_matches == 0:
|
||||
return np.zeros((20, 6), np.float32)
|
||||
elif num_matches > 20:
|
||||
args_best20 = np.argpartition(scores[args_best], -20)[-20:]
|
||||
args_best = args_best[args_best20]
|
||||
|
||||
boxes = boxes[args_best]
|
||||
class_ids = class_ids[args_best]
|
||||
scores = scores[args_best]
|
||||
|
||||
boxes = np.transpose(
|
||||
np.vstack(
|
||||
(
|
||||
boxes[:, 1] / self.height,
|
||||
boxes[:, 0] / self.width,
|
||||
boxes[:, 3] / self.height,
|
||||
boxes[:, 2] / self.width,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
results = np.hstack(
|
||||
(class_ids[..., np.newaxis], scores[..., np.newaxis], boxes)
|
||||
)
|
||||
|
||||
return np.resize(results, (20, 6))
|
||||
|
||||
def post_process(self, output):
|
||||
if self.detector_config.model.model_type == ModelTypeEnum.yolonas:
|
||||
return self.yolonas(output)
|
||||
else:
|
||||
raise ValueError(
|
||||
f'Model type "{self.detector_config.model.model_type}" is currently not supported.'
|
||||
)
|
||||
|
@ -30,6 +30,7 @@ class InputTensorEnum(str, Enum):
|
||||
class ModelTypeEnum(str, Enum):
|
||||
ssd = "ssd"
|
||||
yolox = "yolox"
|
||||
yolonas = "yolonas"
|
||||
|
||||
|
||||
class ModelConfig(BaseModel):
|
||||
|
Loading…
Reference in New Issue
Block a user