mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-23 19:11:14 +01:00
got bounding boxes repositioned for full frame
This commit is contained in:
parent
98ce5a4a59
commit
a976403edc
@ -60,22 +60,21 @@ def detect_objects(cropped_frame, full_frame, sess, detection_graph):
|
||||
squeezed_boxes = np.squeeze(boxes)
|
||||
squeezed_scores = np.squeeze(scores)
|
||||
|
||||
full_frame_shape = full_frame.shape
|
||||
cropped_frame_shape = cropped_frame.shape
|
||||
|
||||
if(len(objects)>0):
|
||||
# reposition bounding box based on full frame
|
||||
for i, box in enumerate(squeezed_boxes):
|
||||
if squeezed_scores[i] > .1:
|
||||
ymin = ((box[0] * 300) + 200)/1080 # ymin
|
||||
xmin = ((box[1] * 300) + 1300)/1920 # xmin
|
||||
xmax = ((box[2] * 300) + 200)/1080 # ymax
|
||||
ymax = ((box[3] * 300) + 1300)/1920 # xmax
|
||||
print("ymin", box[0] * 300, ymin)
|
||||
print("xmin", box[1] * 300, xmin)
|
||||
print("ymax", box[2] * 300, ymax)
|
||||
print("xmax", box[3] * 300, xmax)
|
||||
if box[2] > 0:
|
||||
squeezed_boxes[i][0] = ((box[0] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymin
|
||||
squeezed_boxes[i][1] = ((box[1] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmin
|
||||
squeezed_boxes[i][2] = ((box[2] * cropped_frame_shape[0]) + 200)/full_frame_shape[0] # ymax
|
||||
squeezed_boxes[i][3] = ((box[3] * cropped_frame_shape[0]) + 1300)/full_frame_shape[1] # xmax
|
||||
|
||||
# draw boxes for detected objects on image
|
||||
vis_util.visualize_boxes_and_labels_on_image_array(
|
||||
cropped_frame,
|
||||
full_frame,
|
||||
squeezed_boxes,
|
||||
np.squeeze(classes).astype(np.int32),
|
||||
squeezed_scores,
|
||||
@ -86,7 +85,7 @@ def detect_objects(cropped_frame, full_frame, sess, detection_graph):
|
||||
|
||||
# cv2.rectangle(full_frame, (800, 100), (1250, 550), (255,0,0), 2)
|
||||
|
||||
return objects, cropped_frame
|
||||
return objects, full_frame
|
||||
|
||||
def main():
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
@ -113,10 +112,10 @@ def main():
|
||||
# TODO: make dynamic
|
||||
shared_cropped_arr = mp.Array(ctypes.c_uint16, 300*300*3)
|
||||
# create shared array for passing the image data from detect_objects to flask
|
||||
shared_output_arr = mp.Array(ctypes.c_uint16, 300*300*3)#flat_array_length)
|
||||
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create a numpy array with the image shape from the shared memory array
|
||||
# this is used by flask to output an mjpeg stream
|
||||
frame_output_arr = tonumpyarray(shared_output_arr).reshape(300,300,3)
|
||||
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
||||
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
|
||||
capture_process.daemon = True
|
||||
@ -199,7 +198,7 @@ def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_fra
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(300,300,3)
|
||||
# shape shared output array into frame so it can be copied into
|
||||
output_arr = tonumpyarray(shared_output_arr).reshape(300,300,3)
|
||||
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
|
||||
|
||||
# Load a (frozen) Tensorflow model into memory before the processing loop
|
||||
detection_graph = tf.Graph()
|
||||
|
Loading…
Reference in New Issue
Block a user