mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type
This commit is contained in:
parent
4bcb071823
commit
a982698933
@ -51,7 +51,7 @@ class ONNXDetector(DetectionApi):
|
|||||||
model_input_name = self.model.get_inputs()[0].name
|
model_input_name = self.model.get_inputs()[0].name
|
||||||
model_input_shape = self.model.get_inputs()[0].shape
|
model_input_shape = self.model.get_inputs()[0].shape
|
||||||
|
|
||||||
tensor_input = yolo_utils.yolov8_preprocess(tensor_input, model_input_shape)
|
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32)
|
||||||
|
|
||||||
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
tensor_output = self.model.run(None, {model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
|
@ -8,6 +8,8 @@ from typing_extensions import Literal
|
|||||||
from frigate.detectors.detection_api import DetectionApi
|
from frigate.detectors.detection_api import DetectionApi
|
||||||
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
||||||
|
|
||||||
|
import frigate.detectors.yolo_utils as yolo_utils
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
DETECTOR_KEY = "openvino"
|
DETECTOR_KEY = "openvino"
|
||||||
@ -33,7 +35,7 @@ class OvDetector(DetectionApi):
|
|||||||
model=self.ov_model, device_name=detector_config.device
|
model=self.ov_model, device_name=detector_config.device
|
||||||
)
|
)
|
||||||
|
|
||||||
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape}")
|
logger.info(f"Model Input Shape: {self.interpreter.input(0).shape} {self.interpreter.input(0).element_type.to_dtype()}")
|
||||||
self.output_indexes = 0
|
self.output_indexes = 0
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
@ -80,6 +82,7 @@ class OvDetector(DetectionApi):
|
|||||||
]
|
]
|
||||||
|
|
||||||
def detect_raw(self, tensor_input):
|
def detect_raw(self, tensor_input):
|
||||||
|
tensor_input = yolo_utils.preprocess(tensor_input, self.interpreter.inputs[0].shape, self.interpreter.inputs[0].element_type.to_dtype())
|
||||||
infer_request = self.interpreter.create_infer_request()
|
infer_request = self.interpreter.create_infer_request()
|
||||||
infer_request.infer([tensor_input])
|
infer_request.infer([tensor_input])
|
||||||
|
|
||||||
|
@ -102,7 +102,7 @@ class ROCmDetector(DetectionApi):
|
|||||||
model_input_name = self.model.get_parameter_names()[0];
|
model_input_name = self.model.get_parameter_names()[0];
|
||||||
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens());
|
||||||
|
|
||||||
tensor_input = yolo_utils.yolov8_preprocess(tensor_input, model_input_shape)
|
tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32)
|
||||||
|
|
||||||
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
detector_result = self.model.run({model_input_name: tensor_input})[0]
|
||||||
|
|
||||||
|
@ -5,11 +5,20 @@ import cv2
|
|||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
def yolov8_preprocess(tensor_input, model_input_shape):
|
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
||||||
|
model_input_shape = tuple(model_input_shape)
|
||||||
|
assert tensor_input.dtype == np.uint8, f'tensor_input.dtype: {tensor_input.dtype}'
|
||||||
|
if len(tensor_input.shape) == 3:
|
||||||
|
tensor_input = tensor_input[np.newaxis, :]
|
||||||
|
if model_input_element_type == np.uint8:
|
||||||
|
# nothing to do for uint8 model input
|
||||||
|
assert model_input_shape == tensor_input.shape, f'model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}'
|
||||||
|
return tensor_input
|
||||||
|
assert model_input_element_type == np.float32, f'model_input_element_type: {model_input_element_type}'
|
||||||
# tensor_input must be nhwc
|
# tensor_input must be nhwc
|
||||||
assert tensor_input.shape[3] == 3
|
assert tensor_input.shape[3] == 3, f'tensor_input.shape: {tensor_input.shape}'
|
||||||
if tuple(tensor_input.shape[1:3]) != tuple(model_input_shape[2:4]):
|
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
||||||
logger.warn(f"yolov8_preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!")
|
logger.warn(f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!")
|
||||||
# cv2.dnn.blobFromImage is faster than numpying it
|
# cv2.dnn.blobFromImage is faster than numpying it
|
||||||
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
|
return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user