Improve logging (#18867)

* Ignore numpy get limits warning

* Add function wrapper to redirect stdout and stderr to logpipe

* Save stderr too

* Add more to catch

* run logpipe

* Use other logging redirect class

* Use other logging redirect class

* add decorator for redirecting c/c++ level output to logger

* fix typing

---------

Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
This commit is contained in:
Nicolas Mowen 2025-06-25 07:24:45 -06:00 committed by GitHub
parent 32f82a947d
commit add68b8860
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 206 additions and 18 deletions

View File

@ -224,6 +224,9 @@ ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
ENV OPENCV_FFMPEG_LOGLEVEL=8
# Set NumPy to ignore getlimits warning
ENV PYTHONWARNINGS="ignore:::numpy.core.getlimits"
# Set HailoRT to disable logging
ENV HAILORT_LOGGER_PATH=NONE

View File

@ -11,6 +11,7 @@ from scipy import stats
from frigate.config import FrigateConfig
from frigate.const import MODEL_CACHE_DIR
from frigate.embeddings.onnx.face_embedding import ArcfaceEmbedding, FaceNetEmbedding
from frigate.log import redirect_output_to_logger
logger = logging.getLogger(__name__)
@ -37,6 +38,7 @@ class FaceRecognizer(ABC):
def classify(self, face_image: np.ndarray) -> tuple[str, float] | None:
pass
@redirect_output_to_logger(logger, logging.DEBUG)
def init_landmark_detector(self) -> None:
landmark_model = os.path.join(MODEL_CACHE_DIR, "facedet/landmarkdet.yaml")

View File

@ -5,6 +5,7 @@ from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from frigate.log import redirect_output_to_logger
from ..detector_utils import tflite_detect_raw, tflite_init
@ -27,6 +28,7 @@ class CpuDetectorConfig(BaseDetectorConfig):
class CpuTfl(DetectionApi):
type_key = DETECTOR_KEY
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, detector_config: CpuDetectorConfig):
interpreter = Interpreter(
model_path=detector_config.model.path,

View File

@ -6,6 +6,7 @@ import os
import numpy as np
from frigate.const import MODEL_CACHE_DIR
from frigate.log import redirect_output_to_logger
from frigate.util.downloader import ModelDownloader
from .base_embedding import BaseEmbedding
@ -53,6 +54,7 @@ class FaceNetEmbedding(BaseEmbedding):
self._load_model_and_utils()
logger.debug(f"models are already downloaded for {self.model_name}")
@redirect_output_to_logger(logger, logging.DEBUG)
def _load_model_and_utils(self):
if self.runner is None:
if self.downloader:

View File

@ -37,7 +37,7 @@ from frigate.data_processing.real_time.audio_transcription import (
AudioTranscriptionRealTimeProcessor,
)
from frigate.ffmpeg_presets import parse_preset_input
from frigate.log import LogPipe
from frigate.log import LogPipe, redirect_output_to_logger
from frigate.object_detection.base import load_labels
from frigate.util.builtin import get_ffmpeg_arg_list
from frigate.util.process import FrigateProcess
@ -49,6 +49,9 @@ except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter
logger = logging.getLogger(__name__)
def get_ffmpeg_command(ffmpeg: FfmpegConfig) -> list[str]:
ffmpeg_input: CameraInput = [i for i in ffmpeg.inputs if "audio" in i.roles][0]
input_args = get_ffmpeg_arg_list(ffmpeg.global_args) + (
@ -423,6 +426,7 @@ class AudioEventMaintainer(threading.Thread):
class AudioTfl:
@redirect_output_to_logger(logger, logging.DEBUG)
def __init__(self, stop_event: threading.Event, num_threads=2):
self.stop_event = stop_event
self.num_threads = num_threads

View File

@ -1,15 +1,18 @@
# In log.py
import atexit
import io
import logging
import os
import sys
import threading
from collections import deque
from contextlib import contextmanager
from enum import Enum
from functools import wraps
from logging.handlers import QueueHandler, QueueListener
from multiprocessing.managers import SyncManager
from queue import Queue
from typing import Deque, Optional
from queue import Empty, Queue
from typing import Any, Callable, Deque, Generator, Optional
from frigate.util.builtin import clean_camera_user_pass
@ -102,11 +105,11 @@ os.register_at_fork(after_in_child=reopen_std_streams)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name: str):
def __init__(self, log_name: str, level: int = logging.ERROR):
"""Setup the object with a logger and start the thread"""
super().__init__(daemon=False)
self.logger = logging.getLogger(log_name)
self.level = logging.ERROR
self.level = level
self.deque: Deque[str] = deque(maxlen=100)
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
@ -135,3 +138,182 @@ class LogPipe(threading.Thread):
def close(self) -> None:
"""Close the write end of the pipe."""
os.close(self.fdWrite)
class LogRedirect(io.StringIO):
"""
A custom file-like object to capture stdout and process it.
It extends io.StringIO to capture output and then processes it
line by line.
"""
def __init__(self, logger_instance: logging.Logger, level: int):
super().__init__()
self.logger = logger_instance
self.log_level = level
self._line_buffer: list[str] = []
def write(self, s: Any) -> int:
if not isinstance(s, str):
s = str(s)
self._line_buffer.append(s)
# Process output line by line if a newline is present
if "\n" in s:
full_output = "".join(self._line_buffer)
lines = full_output.splitlines(keepends=True)
self._line_buffer = []
for line in lines:
if line.endswith("\n"):
self._process_line(line.rstrip("\n"))
else:
self._line_buffer.append(line)
return len(s)
def _process_line(self, line: str) -> None:
self.logger.log(self.log_level, line)
def flush(self) -> None:
if self._line_buffer:
full_output = "".join(self._line_buffer)
self._line_buffer = []
if full_output: # Only process if there's content
self._process_line(full_output)
def __enter__(self) -> "LogRedirect":
"""Context manager entry point."""
return self
def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
"""Context manager exit point. Ensures buffered content is flushed."""
self.flush()
@contextmanager
def redirect_fd_to_queue(queue: Queue[str]) -> Generator[None, None, None]:
"""Redirect file descriptor 1 (stdout) to a pipe and capture output in a queue."""
stdout_fd = os.dup(1)
read_fd, write_fd = os.pipe()
os.dup2(write_fd, 1)
os.close(write_fd)
stop_event = threading.Event()
def reader() -> None:
"""Read from pipe and put lines in queue until stop_event is set."""
try:
with os.fdopen(read_fd, "r") as pipe:
while not stop_event.is_set():
line = pipe.readline()
if not line: # EOF
break
queue.put(line.strip())
except OSError as e:
queue.put(f"Reader error: {e}")
finally:
if not stop_event.is_set():
stop_event.set()
reader_thread = threading.Thread(target=reader, daemon=False)
reader_thread.start()
try:
yield
finally:
os.dup2(stdout_fd, 1)
os.close(stdout_fd)
stop_event.set()
reader_thread.join(timeout=1.0)
try:
os.close(read_fd)
except OSError:
pass
def redirect_output_to_logger(logger: logging.Logger, level: int) -> Any:
"""Decorator to redirect both Python sys.stdout/stderr and C-level stdout to logger."""
def decorator(func: Callable) -> Callable:
@wraps(func)
def wrapper(*args: Any, **kwargs: Any) -> Any:
queue: Queue[str] = Queue()
log_redirect = LogRedirect(logger, level)
old_stdout = sys.stdout
old_stderr = sys.stderr
sys.stdout = log_redirect
sys.stderr = log_redirect
try:
# Redirect C-level stdout
with redirect_fd_to_queue(queue):
result = func(*args, **kwargs)
finally:
# Restore Python stdout/stderr
sys.stdout = old_stdout
sys.stderr = old_stderr
log_redirect.flush()
# Log C-level output from queue
while True:
try:
logger.log(level, queue.get_nowait())
except Empty:
break
return result
return wrapper
return decorator
def suppress_os_output(func: Callable) -> Callable:
"""
A decorator that suppresses all output (stdout and stderr)
at the operating system file descriptor level for the decorated function.
This is useful for silencing noisy C/C++ libraries.
Note: This is a Unix-specific solution using os.dup2 and os.pipe.
It temporarily redirects file descriptors 1 (stdout) and 2 (stderr)
to a non-read pipe, effectively discarding their output.
"""
@wraps(func)
def wrapper(*args: tuple, **kwargs: dict[str, Any]) -> Any:
# Save the original file descriptors for stdout (1) and stderr (2)
original_stdout_fd = os.dup(1)
original_stderr_fd = os.dup(2)
# Create dummy pipes. We only need the write ends to redirect to.
# The data written to these pipes will be discarded as nothing
# will read from the read ends.
devnull_read_fd, devnull_write_fd = os.pipe()
try:
# Redirect stdout (FD 1) and stderr (FD 2) to the write end of our dummy pipe
os.dup2(devnull_write_fd, 1) # Redirect stdout to devnull pipe
os.dup2(devnull_write_fd, 2) # Redirect stderr to devnull pipe
# Execute the original function
result = func(*args, **kwargs)
finally:
# Restore original stdout and stderr file descriptors (1 and 2)
# This is crucial to ensure normal printing resumes after the decorated function.
os.dup2(original_stdout_fd, 1)
os.dup2(original_stderr_fd, 2)
# Close all duplicated and pipe file descriptors to prevent resource leaks.
# It's important to close the read end of the dummy pipe too,
# as nothing is explicitly reading from it.
os.close(original_stdout_fd)
os.close(original_stderr_fd)
os.close(devnull_read_fd)
os.close(devnull_write_fd)
return result
return wrapper

View File

@ -1,7 +1,7 @@
"""Util for classification models."""
import logging
import os
import sys
import cv2
import numpy as np
@ -9,6 +9,7 @@ import numpy as np
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor
from frigate.comms.inter_process import InterProcessRequestor
from frigate.const import CLIPS_DIR, MODEL_CACHE_DIR, UPDATE_MODEL_STATE
from frigate.log import redirect_output_to_logger
from frigate.types import ModelStatusTypesEnum
from frigate.util.process import FrigateProcess
@ -16,6 +17,8 @@ BATCH_SIZE = 16
EPOCHS = 50
LEARNING_RATE = 0.001
logger = logging.getLogger(__name__)
def __generate_representative_dataset_factory(dataset_dir: str):
def generate_representative_dataset():
@ -36,6 +39,7 @@ def __generate_representative_dataset_factory(dataset_dir: str):
return generate_representative_dataset
@redirect_output_to_logger(logger, logging.DEBUG)
def __train_classification_model(model_name: str) -> bool:
"""Train a classification model."""
@ -55,14 +59,6 @@ def __train_classification_model(model_name: str) -> bool:
]
)
# TF and Keras are very loud with logging
# we want to avoid these logs so we
# temporarily redirect stdout / stderr
original_stdout = sys.stdout
original_stderr = sys.stderr
sys.stdout = open(os.devnull, "w")
sys.stderr = open(os.devnull, "w")
# Start with imagenet base model with 35% of channels in each layer
base_model = MobileNetV2(
input_shape=(224, 224, 3),
@ -124,10 +120,6 @@ def __train_classification_model(model_name: str) -> bool:
with open(os.path.join(model_dir, "model.tflite"), "wb") as f:
f.write(tflite_model)
# restore original stdout / stderr
sys.stdout = original_stdout
sys.stderr = original_stderr
@staticmethod
def kickoff_model_training(
@ -146,6 +138,7 @@ def kickoff_model_training(
# tensorflow will free CPU / GPU memory
# upon training completion
training_process = FrigateProcess(
None,
target=__train_classification_model,
name=f"model_training:{model_name}",
args=(model_name,),