mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Improve tracking (#6516)
This commit is contained in:
parent
bd1d13d78c
commit
ae0aba44dc
@ -53,7 +53,8 @@
|
|||||||
"csstools.postcss",
|
"csstools.postcss",
|
||||||
"blanu.vscode-styled-jsx",
|
"blanu.vscode-styled-jsx",
|
||||||
"bradlc.vscode-tailwindcss",
|
"bradlc.vscode-tailwindcss",
|
||||||
"ms-python.isort"
|
"ms-python.isort",
|
||||||
|
"charliermarsh.ruff"
|
||||||
],
|
],
|
||||||
"settings": {
|
"settings": {
|
||||||
"remote.autoForwardPorts": false,
|
"remote.autoForwardPorts": false,
|
||||||
@ -69,9 +70,7 @@
|
|||||||
"python.testing.unittestArgs": ["-v", "-s", "./frigate/test"],
|
"python.testing.unittestArgs": ["-v", "-s", "./frigate/test"],
|
||||||
"files.trimTrailingWhitespace": true,
|
"files.trimTrailingWhitespace": true,
|
||||||
"eslint.workingDirectories": ["./web"],
|
"eslint.workingDirectories": ["./web"],
|
||||||
"isort.args": [
|
"isort.args": ["--settings-path=./pyproject.toml"],
|
||||||
"--settings-path=./pyproject.toml"
|
|
||||||
],
|
|
||||||
"[python]": {
|
"[python]": {
|
||||||
"editor.defaultFormatter": "ms-python.black-formatter",
|
"editor.defaultFormatter": "ms-python.black-formatter",
|
||||||
"editor.formatOnSave": true
|
"editor.formatOnSave": true
|
||||||
|
@ -62,6 +62,8 @@ def log_process(log_queue: Queue) -> None:
|
|||||||
if stop_event.is_set():
|
if stop_event.is_set():
|
||||||
break
|
break
|
||||||
continue
|
continue
|
||||||
|
if record.msg.startswith("You are using a scalar distance function"):
|
||||||
|
continue
|
||||||
logger = logging.getLogger(record.name)
|
logger = logging.getLogger(record.name)
|
||||||
logger.handle(record)
|
logger.handle(record)
|
||||||
|
|
||||||
|
13
frigate/track/__init__.py
Normal file
13
frigate/track/__init__.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
from frigate.config import DetectConfig
|
||||||
|
|
||||||
|
|
||||||
|
class ObjectTracker(ABC):
|
||||||
|
@abstractmethod
|
||||||
|
def __init__(self, config: DetectConfig):
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def match_and_update(self, detections):
|
||||||
|
pass
|
@ -6,10 +6,11 @@ import numpy as np
|
|||||||
from scipy.spatial import distance as dist
|
from scipy.spatial import distance as dist
|
||||||
|
|
||||||
from frigate.config import DetectConfig
|
from frigate.config import DetectConfig
|
||||||
|
from frigate.track import ObjectTracker
|
||||||
from frigate.util import intersection_over_union
|
from frigate.util import intersection_over_union
|
||||||
|
|
||||||
|
|
||||||
class ObjectTracker:
|
class CentroidTracker(ObjectTracker):
|
||||||
def __init__(self, config: DetectConfig):
|
def __init__(self, config: DetectConfig):
|
||||||
self.tracked_objects = {}
|
self.tracked_objects = {}
|
||||||
self.disappeared = {}
|
self.disappeared = {}
|
||||||
@ -134,11 +135,11 @@ class ObjectTracker:
|
|||||||
if self.is_expired(id):
|
if self.is_expired(id):
|
||||||
self.deregister(id)
|
self.deregister(id)
|
||||||
|
|
||||||
def match_and_update(self, frame_time, new_objects):
|
def match_and_update(self, frame_time, detections):
|
||||||
# group by name
|
# group by name
|
||||||
new_object_groups = defaultdict(lambda: [])
|
detection_groups = defaultdict(lambda: [])
|
||||||
for obj in new_objects:
|
for obj in detections:
|
||||||
new_object_groups[obj[0]].append(
|
detection_groups[obj[0]].append(
|
||||||
{
|
{
|
||||||
"label": obj[0],
|
"label": obj[0],
|
||||||
"score": obj[1],
|
"score": obj[1],
|
||||||
@ -153,17 +154,17 @@ class ObjectTracker:
|
|||||||
# update any tracked objects with labels that are not
|
# update any tracked objects with labels that are not
|
||||||
# seen in the current objects and deregister if needed
|
# seen in the current objects and deregister if needed
|
||||||
for obj in list(self.tracked_objects.values()):
|
for obj in list(self.tracked_objects.values()):
|
||||||
if obj["label"] not in new_object_groups:
|
if obj["label"] not in detection_groups:
|
||||||
if self.disappeared[obj["id"]] >= self.max_disappeared:
|
if self.disappeared[obj["id"]] >= self.max_disappeared:
|
||||||
self.deregister(obj["id"])
|
self.deregister(obj["id"])
|
||||||
else:
|
else:
|
||||||
self.disappeared[obj["id"]] += 1
|
self.disappeared[obj["id"]] += 1
|
||||||
|
|
||||||
if len(new_objects) == 0:
|
if len(detections) == 0:
|
||||||
return
|
return
|
||||||
|
|
||||||
# track objects for each label type
|
# track objects for each label type
|
||||||
for label, group in new_object_groups.items():
|
for label, group in detection_groups.items():
|
||||||
current_objects = [
|
current_objects = [
|
||||||
o for o in self.tracked_objects.values() if o["label"] == label
|
o for o in self.tracked_objects.values() if o["label"] == label
|
||||||
]
|
]
|
285
frigate/track/norfair_tracker.py
Normal file
285
frigate/track/norfair_tracker.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
import random
|
||||||
|
import string
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from norfair import Detection, Drawable, Tracker, draw_boxes
|
||||||
|
from norfair.drawing.drawer import Drawer
|
||||||
|
|
||||||
|
from frigate.config import DetectConfig
|
||||||
|
from frigate.track import ObjectTracker
|
||||||
|
from frigate.util import intersection_over_union
|
||||||
|
|
||||||
|
|
||||||
|
# Normalizes distance from estimate relative to object size
|
||||||
|
# Other ideas:
|
||||||
|
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
||||||
|
# - could be variable based on time since last_detection
|
||||||
|
# - include estimated velocity in the distance (car driving by of a parked car)
|
||||||
|
# - include some visual similarity factor in the distance for occlusions
|
||||||
|
def distance(detection: np.array, estimate: np.array) -> float:
|
||||||
|
# ultimately, this should try and estimate distance in 3-dimensional space
|
||||||
|
# consider change in location, width, and height
|
||||||
|
|
||||||
|
estimate_dim = np.diff(estimate, axis=0).flatten()
|
||||||
|
detection_dim = np.diff(detection, axis=0).flatten()
|
||||||
|
|
||||||
|
# get bottom center positions
|
||||||
|
detection_position = np.array(
|
||||||
|
[np.average(detection[:, 0]), np.max(detection[:, 1])]
|
||||||
|
)
|
||||||
|
estimate_position = np.array([np.average(estimate[:, 0]), np.max(estimate[:, 1])])
|
||||||
|
|
||||||
|
distance = (detection_position - estimate_position).astype(float)
|
||||||
|
# change in x relative to w
|
||||||
|
distance[0] /= estimate_dim[0]
|
||||||
|
# change in y relative to h
|
||||||
|
distance[1] /= estimate_dim[1]
|
||||||
|
|
||||||
|
# get ratio of widths and heights
|
||||||
|
# normalize to 1
|
||||||
|
widths = np.sort([estimate_dim[0], detection_dim[0]])
|
||||||
|
heights = np.sort([estimate_dim[1], detection_dim[1]])
|
||||||
|
width_ratio = widths[1] / widths[0] - 1.0
|
||||||
|
height_ratio = heights[1] / heights[0] - 1.0
|
||||||
|
|
||||||
|
# change vector is relative x,y change and w,h ratio
|
||||||
|
change = np.append(distance, np.array([width_ratio, height_ratio]))
|
||||||
|
|
||||||
|
# calculate euclidean distance of the change vector
|
||||||
|
return np.linalg.norm(change)
|
||||||
|
|
||||||
|
|
||||||
|
def frigate_distance(detection: Detection, tracked_object) -> float:
|
||||||
|
return distance(detection.points, tracked_object.estimate)
|
||||||
|
|
||||||
|
|
||||||
|
class NorfairTracker(ObjectTracker):
|
||||||
|
def __init__(self, config: DetectConfig):
|
||||||
|
self.tracked_objects = {}
|
||||||
|
self.disappeared = {}
|
||||||
|
self.positions = {}
|
||||||
|
self.max_disappeared = config.max_disappeared
|
||||||
|
self.detect_config = config
|
||||||
|
self.track_id_map = {}
|
||||||
|
# TODO: could also initialize a tracker per object class if there
|
||||||
|
# was a good reason to have different distance calculations
|
||||||
|
self.tracker = Tracker(
|
||||||
|
distance_function=frigate_distance,
|
||||||
|
distance_threshold=2.5,
|
||||||
|
initialization_delay=0,
|
||||||
|
hit_counter_max=self.max_disappeared,
|
||||||
|
)
|
||||||
|
|
||||||
|
def register(self, track_id, obj):
|
||||||
|
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||||
|
id = f"{obj['frame_time']}-{rand_id}"
|
||||||
|
self.track_id_map[track_id] = id
|
||||||
|
obj["id"] = id
|
||||||
|
obj["start_time"] = obj["frame_time"]
|
||||||
|
obj["motionless_count"] = 0
|
||||||
|
obj["position_changes"] = 0
|
||||||
|
self.tracked_objects[id] = obj
|
||||||
|
self.disappeared[id] = 0
|
||||||
|
self.positions[id] = {
|
||||||
|
"xmins": [],
|
||||||
|
"ymins": [],
|
||||||
|
"xmaxs": [],
|
||||||
|
"ymaxs": [],
|
||||||
|
"xmin": 0,
|
||||||
|
"ymin": 0,
|
||||||
|
"xmax": self.detect_config.width,
|
||||||
|
"ymax": self.detect_config.height,
|
||||||
|
}
|
||||||
|
|
||||||
|
def deregister(self, id):
|
||||||
|
del self.tracked_objects[id]
|
||||||
|
del self.disappeared[id]
|
||||||
|
|
||||||
|
# tracks the current position of the object based on the last N bounding boxes
|
||||||
|
# returns False if the object has moved outside its previous position
|
||||||
|
def update_position(self, id, box):
|
||||||
|
position = self.positions[id]
|
||||||
|
position_box = (
|
||||||
|
position["xmin"],
|
||||||
|
position["ymin"],
|
||||||
|
position["xmax"],
|
||||||
|
position["ymax"],
|
||||||
|
)
|
||||||
|
|
||||||
|
xmin, ymin, xmax, ymax = box
|
||||||
|
|
||||||
|
iou = intersection_over_union(position_box, box)
|
||||||
|
|
||||||
|
# if the iou drops below the threshold
|
||||||
|
# assume the object has moved to a new position and reset the computed box
|
||||||
|
if iou < 0.6:
|
||||||
|
self.positions[id] = {
|
||||||
|
"xmins": [xmin],
|
||||||
|
"ymins": [ymin],
|
||||||
|
"xmaxs": [xmax],
|
||||||
|
"ymaxs": [ymax],
|
||||||
|
"xmin": xmin,
|
||||||
|
"ymin": ymin,
|
||||||
|
"xmax": xmax,
|
||||||
|
"ymax": ymax,
|
||||||
|
}
|
||||||
|
return False
|
||||||
|
|
||||||
|
# if there are less than 10 entries for the position, add the bounding box
|
||||||
|
# and recompute the position box
|
||||||
|
if len(position["xmins"]) < 10:
|
||||||
|
position["xmins"].append(xmin)
|
||||||
|
position["ymins"].append(ymin)
|
||||||
|
position["xmaxs"].append(xmax)
|
||||||
|
position["ymaxs"].append(ymax)
|
||||||
|
# by using percentiles here, we hopefully remove outliers
|
||||||
|
position["xmin"] = np.percentile(position["xmins"], 15)
|
||||||
|
position["ymin"] = np.percentile(position["ymins"], 15)
|
||||||
|
position["xmax"] = np.percentile(position["xmaxs"], 85)
|
||||||
|
position["ymax"] = np.percentile(position["ymaxs"], 85)
|
||||||
|
|
||||||
|
return True
|
||||||
|
|
||||||
|
def is_expired(self, id):
|
||||||
|
obj = self.tracked_objects[id]
|
||||||
|
# get the max frames for this label type or the default
|
||||||
|
max_frames = self.detect_config.stationary.max_frames.objects.get(
|
||||||
|
obj["label"], self.detect_config.stationary.max_frames.default
|
||||||
|
)
|
||||||
|
|
||||||
|
# if there is no max_frames for this label type, continue
|
||||||
|
if max_frames is None:
|
||||||
|
return False
|
||||||
|
|
||||||
|
# if the object has exceeded the max_frames setting, deregister
|
||||||
|
if (
|
||||||
|
obj["motionless_count"] - self.detect_config.stationary.threshold
|
||||||
|
> max_frames
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def update(self, track_id, obj):
|
||||||
|
id = self.track_id_map[track_id]
|
||||||
|
self.disappeared[id] = 0
|
||||||
|
# update the motionless count if the object has not moved to a new position
|
||||||
|
if self.update_position(id, obj["box"]):
|
||||||
|
self.tracked_objects[id]["motionless_count"] += 1
|
||||||
|
if self.is_expired(id):
|
||||||
|
self.deregister(id)
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
# register the first position change and then only increment if
|
||||||
|
# the object was previously stationary
|
||||||
|
if (
|
||||||
|
self.tracked_objects[id]["position_changes"] == 0
|
||||||
|
or self.tracked_objects[id]["motionless_count"]
|
||||||
|
>= self.detect_config.stationary.threshold
|
||||||
|
):
|
||||||
|
self.tracked_objects[id]["position_changes"] += 1
|
||||||
|
self.tracked_objects[id]["motionless_count"] = 0
|
||||||
|
|
||||||
|
self.tracked_objects[id].update(obj)
|
||||||
|
|
||||||
|
def update_frame_times(self, frame_time):
|
||||||
|
# if the object was there in the last frame, assume it's still there
|
||||||
|
detections = [
|
||||||
|
(
|
||||||
|
obj["label"],
|
||||||
|
obj["score"],
|
||||||
|
obj["box"],
|
||||||
|
obj["area"],
|
||||||
|
obj["ratio"],
|
||||||
|
obj["region"],
|
||||||
|
)
|
||||||
|
for id, obj in self.tracked_objects.items()
|
||||||
|
if self.disappeared[id] == 0
|
||||||
|
]
|
||||||
|
self.match_and_update(frame_time, detections=detections)
|
||||||
|
|
||||||
|
def match_and_update(self, frame_time, detections):
|
||||||
|
norfair_detections = []
|
||||||
|
|
||||||
|
for obj in detections:
|
||||||
|
# centroid is used for other things downstream
|
||||||
|
centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
|
||||||
|
centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
|
||||||
|
|
||||||
|
# track based on top,left and bottom,right corners instead of centroid
|
||||||
|
points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
|
||||||
|
|
||||||
|
norfair_detections.append(
|
||||||
|
Detection(
|
||||||
|
points=points,
|
||||||
|
label=obj[0],
|
||||||
|
data={
|
||||||
|
"label": obj[0],
|
||||||
|
"score": obj[1],
|
||||||
|
"box": obj[2],
|
||||||
|
"area": obj[3],
|
||||||
|
"ratio": obj[4],
|
||||||
|
"region": obj[5],
|
||||||
|
"frame_time": frame_time,
|
||||||
|
"centroid": (centroid_x, centroid_y),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
tracked_objects = self.tracker.update(detections=norfair_detections)
|
||||||
|
|
||||||
|
# update or create new tracks
|
||||||
|
active_ids = []
|
||||||
|
for t in tracked_objects:
|
||||||
|
active_ids.append(t.global_id)
|
||||||
|
if t.global_id not in self.track_id_map:
|
||||||
|
self.register(t.global_id, t.last_detection.data)
|
||||||
|
# if there wasn't a detection in this frame, increment disappeared
|
||||||
|
elif t.last_detection.data["frame_time"] != frame_time:
|
||||||
|
id = self.track_id_map[t.global_id]
|
||||||
|
self.disappeared[id] += 1
|
||||||
|
# else update it
|
||||||
|
else:
|
||||||
|
self.update(t.global_id, t.last_detection.data)
|
||||||
|
|
||||||
|
# clear expired tracks
|
||||||
|
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
||||||
|
for e_id in expired_ids:
|
||||||
|
self.deregister(self.track_id_map[e_id])
|
||||||
|
del self.track_id_map[e_id]
|
||||||
|
|
||||||
|
def debug_draw(self, frame, frame_time):
|
||||||
|
active_detections = [
|
||||||
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||||
|
for obj in self.tracker.tracked_objects
|
||||||
|
if obj.last_detection.data["frame_time"] == frame_time
|
||||||
|
]
|
||||||
|
missing_detections = [
|
||||||
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||||
|
for obj in self.tracker.tracked_objects
|
||||||
|
if obj.last_detection.data["frame_time"] != frame_time
|
||||||
|
]
|
||||||
|
# draw the estimated bounding box
|
||||||
|
draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
|
||||||
|
# draw the detections that were detected in the current frame
|
||||||
|
draw_boxes(frame, active_detections, color="blue", draw_ids=True)
|
||||||
|
# draw the detections that are missing in the current frame
|
||||||
|
draw_boxes(frame, missing_detections, color="red", draw_ids=True)
|
||||||
|
|
||||||
|
# draw the distance calculation for the last detection
|
||||||
|
# estimate vs detection
|
||||||
|
for obj in self.tracker.tracked_objects:
|
||||||
|
ld = obj.last_detection
|
||||||
|
# bottom right
|
||||||
|
text_anchor = (
|
||||||
|
ld.points[1, 0],
|
||||||
|
ld.points[1, 1],
|
||||||
|
)
|
||||||
|
frame = Drawer.text(
|
||||||
|
frame,
|
||||||
|
f"{obj.id}: {str(obj.last_distance)}",
|
||||||
|
position=text_anchor,
|
||||||
|
size=None,
|
||||||
|
color=(255, 0, 0),
|
||||||
|
thickness=None,
|
||||||
|
)
|
@ -19,7 +19,8 @@ from frigate.const import CACHE_DIR
|
|||||||
from frigate.log import LogPipe
|
from frigate.log import LogPipe
|
||||||
from frigate.motion import MotionDetector
|
from frigate.motion import MotionDetector
|
||||||
from frigate.object_detection import RemoteObjectDetector
|
from frigate.object_detection import RemoteObjectDetector
|
||||||
from frigate.objects import ObjectTracker
|
from frigate.track import ObjectTracker
|
||||||
|
from frigate.track.norfair_tracker import NorfairTracker
|
||||||
from frigate.util import (
|
from frigate.util import (
|
||||||
EventsPerSecond,
|
EventsPerSecond,
|
||||||
FrameManager,
|
FrameManager,
|
||||||
@ -472,7 +473,7 @@ def track_camera(
|
|||||||
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
||||||
)
|
)
|
||||||
|
|
||||||
object_tracker = ObjectTracker(config.detect)
|
object_tracker = NorfairTracker(config.detect)
|
||||||
|
|
||||||
frame_manager = SharedMemoryFrameManager()
|
frame_manager = SharedMemoryFrameManager()
|
||||||
|
|
||||||
@ -847,6 +848,17 @@ def process_frames(
|
|||||||
else:
|
else:
|
||||||
object_tracker.update_frame_times(frame_time)
|
object_tracker.update_frame_times(frame_time)
|
||||||
|
|
||||||
|
# debug tracking by writing frames
|
||||||
|
if False:
|
||||||
|
bgr_frame = cv2.cvtColor(
|
||||||
|
frame,
|
||||||
|
cv2.COLOR_YUV2BGR_I420,
|
||||||
|
)
|
||||||
|
object_tracker.debug_draw(bgr_frame, frame_time)
|
||||||
|
cv2.imwrite(
|
||||||
|
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
||||||
|
)
|
||||||
|
|
||||||
# add to the queue if not full
|
# add to the queue if not full
|
||||||
if detected_objects_queue.full():
|
if detected_objects_queue.full():
|
||||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||||
|
@ -10,13 +10,13 @@ import click
|
|||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
sys.path.append("/lab/frigate")
|
sys.path.append("/workspace/frigate")
|
||||||
|
|
||||||
from frigate.config import FrigateConfig # noqa: E402
|
from frigate.config import FrigateConfig # noqa: E402
|
||||||
from frigate.motion import MotionDetector # noqa: E402
|
from frigate.motion import MotionDetector # noqa: E402
|
||||||
from frigate.object_detection import LocalObjectDetector # noqa: E402
|
from frigate.object_detection import LocalObjectDetector # noqa: E402
|
||||||
from frigate.object_processing import CameraState # noqa: E402
|
from frigate.object_processing import CameraState # noqa: E402
|
||||||
from frigate.objects import ObjectTracker # noqa: E402
|
from frigate.track.centroid_tracker import CentroidTracker # noqa: E402
|
||||||
from frigate.util import ( # noqa: E402
|
from frigate.util import ( # noqa: E402
|
||||||
EventsPerSecond,
|
EventsPerSecond,
|
||||||
SharedMemoryFrameManager,
|
SharedMemoryFrameManager,
|
||||||
@ -108,7 +108,7 @@ class ProcessClip:
|
|||||||
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
|
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
|
||||||
motion_detector.save_images = False
|
motion_detector.save_images = False
|
||||||
|
|
||||||
object_tracker = ObjectTracker(self.camera_config.detect)
|
object_tracker = CentroidTracker(self.camera_config.detect)
|
||||||
process_info = {
|
process_info = {
|
||||||
"process_fps": mp.Value("d", 0.0),
|
"process_fps": mp.Value("d", 0.0),
|
||||||
"detection_fps": mp.Value("d", 0.0),
|
"detection_fps": mp.Value("d", 0.0),
|
||||||
@ -248,7 +248,7 @@ def process(path, label, output, debug_path):
|
|||||||
clips.append(path)
|
clips.append(path)
|
||||||
|
|
||||||
json_config = {
|
json_config = {
|
||||||
"mqtt": {"host": "mqtt"},
|
"mqtt": {"enabled": False},
|
||||||
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
|
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
|
||||||
"cameras": {
|
"cameras": {
|
||||||
"camera": {
|
"camera": {
|
||||||
@ -282,7 +282,7 @@ def process(path, label, output, debug_path):
|
|||||||
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
|
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
|
||||||
|
|
||||||
frigate_config = FrigateConfig(**json_config)
|
frigate_config = FrigateConfig(**json_config)
|
||||||
runtime_config = frigate_config.runtime_config
|
runtime_config = frigate_config.runtime_config()
|
||||||
runtime_config.cameras["camera"].create_ffmpeg_cmds()
|
runtime_config.cameras["camera"].create_ffmpeg_cmds()
|
||||||
|
|
||||||
process_clip = ProcessClip(c, frame_shape, runtime_config)
|
process_clip = ProcessClip(c, frame_shape, runtime_config)
|
||||||
|
@ -19,6 +19,7 @@ types-PyYAML == 6.0.*
|
|||||||
requests == 2.30.*
|
requests == 2.30.*
|
||||||
types-requests == 2.28.*
|
types-requests == 2.28.*
|
||||||
scipy == 1.10.*
|
scipy == 1.10.*
|
||||||
|
norfair == 2.2.*
|
||||||
setproctitle == 1.3.*
|
setproctitle == 1.3.*
|
||||||
ws4py == 0.5.*
|
ws4py == 0.5.*
|
||||||
# Openvino Library - Custom built with MYRIAD support
|
# Openvino Library - Custom built with MYRIAD support
|
||||||
|
Loading…
Reference in New Issue
Block a user