mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
Improve tracking (#6516)
This commit is contained in:
parent
bd1d13d78c
commit
ae0aba44dc
@ -53,7 +53,8 @@
|
||||
"csstools.postcss",
|
||||
"blanu.vscode-styled-jsx",
|
||||
"bradlc.vscode-tailwindcss",
|
||||
"ms-python.isort"
|
||||
"ms-python.isort",
|
||||
"charliermarsh.ruff"
|
||||
],
|
||||
"settings": {
|
||||
"remote.autoForwardPorts": false,
|
||||
@ -69,9 +70,7 @@
|
||||
"python.testing.unittestArgs": ["-v", "-s", "./frigate/test"],
|
||||
"files.trimTrailingWhitespace": true,
|
||||
"eslint.workingDirectories": ["./web"],
|
||||
"isort.args": [
|
||||
"--settings-path=./pyproject.toml"
|
||||
],
|
||||
"isort.args": ["--settings-path=./pyproject.toml"],
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "ms-python.black-formatter",
|
||||
"editor.formatOnSave": true
|
||||
|
@ -62,6 +62,8 @@ def log_process(log_queue: Queue) -> None:
|
||||
if stop_event.is_set():
|
||||
break
|
||||
continue
|
||||
if record.msg.startswith("You are using a scalar distance function"):
|
||||
continue
|
||||
logger = logging.getLogger(record.name)
|
||||
logger.handle(record)
|
||||
|
||||
|
13
frigate/track/__init__.py
Normal file
13
frigate/track/__init__.py
Normal file
@ -0,0 +1,13 @@
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from frigate.config import DetectConfig
|
||||
|
||||
|
||||
class ObjectTracker(ABC):
|
||||
@abstractmethod
|
||||
def __init__(self, config: DetectConfig):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def match_and_update(self, detections):
|
||||
pass
|
@ -6,10 +6,11 @@ import numpy as np
|
||||
from scipy.spatial import distance as dist
|
||||
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.util import intersection_over_union
|
||||
|
||||
|
||||
class ObjectTracker:
|
||||
class CentroidTracker(ObjectTracker):
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
@ -134,11 +135,11 @@ class ObjectTracker:
|
||||
if self.is_expired(id):
|
||||
self.deregister(id)
|
||||
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
def match_and_update(self, frame_time, detections):
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj[0]].append(
|
||||
detection_groups = defaultdict(lambda: [])
|
||||
for obj in detections:
|
||||
detection_groups[obj[0]].append(
|
||||
{
|
||||
"label": obj[0],
|
||||
"score": obj[1],
|
||||
@ -153,17 +154,17 @@ class ObjectTracker:
|
||||
# update any tracked objects with labels that are not
|
||||
# seen in the current objects and deregister if needed
|
||||
for obj in list(self.tracked_objects.values()):
|
||||
if obj["label"] not in new_object_groups:
|
||||
if obj["label"] not in detection_groups:
|
||||
if self.disappeared[obj["id"]] >= self.max_disappeared:
|
||||
self.deregister(obj["id"])
|
||||
else:
|
||||
self.disappeared[obj["id"]] += 1
|
||||
|
||||
if len(new_objects) == 0:
|
||||
if len(detections) == 0:
|
||||
return
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
for label, group in detection_groups.items():
|
||||
current_objects = [
|
||||
o for o in self.tracked_objects.values() if o["label"] == label
|
||||
]
|
285
frigate/track/norfair_tracker.py
Normal file
285
frigate/track/norfair_tracker.py
Normal file
@ -0,0 +1,285 @@
|
||||
import random
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
from norfair import Detection, Drawable, Tracker, draw_boxes
|
||||
from norfair.drawing.drawer import Drawer
|
||||
|
||||
from frigate.config import DetectConfig
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.util import intersection_over_union
|
||||
|
||||
|
||||
# Normalizes distance from estimate relative to object size
|
||||
# Other ideas:
|
||||
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
||||
# - could be variable based on time since last_detection
|
||||
# - include estimated velocity in the distance (car driving by of a parked car)
|
||||
# - include some visual similarity factor in the distance for occlusions
|
||||
def distance(detection: np.array, estimate: np.array) -> float:
|
||||
# ultimately, this should try and estimate distance in 3-dimensional space
|
||||
# consider change in location, width, and height
|
||||
|
||||
estimate_dim = np.diff(estimate, axis=0).flatten()
|
||||
detection_dim = np.diff(detection, axis=0).flatten()
|
||||
|
||||
# get bottom center positions
|
||||
detection_position = np.array(
|
||||
[np.average(detection[:, 0]), np.max(detection[:, 1])]
|
||||
)
|
||||
estimate_position = np.array([np.average(estimate[:, 0]), np.max(estimate[:, 1])])
|
||||
|
||||
distance = (detection_position - estimate_position).astype(float)
|
||||
# change in x relative to w
|
||||
distance[0] /= estimate_dim[0]
|
||||
# change in y relative to h
|
||||
distance[1] /= estimate_dim[1]
|
||||
|
||||
# get ratio of widths and heights
|
||||
# normalize to 1
|
||||
widths = np.sort([estimate_dim[0], detection_dim[0]])
|
||||
heights = np.sort([estimate_dim[1], detection_dim[1]])
|
||||
width_ratio = widths[1] / widths[0] - 1.0
|
||||
height_ratio = heights[1] / heights[0] - 1.0
|
||||
|
||||
# change vector is relative x,y change and w,h ratio
|
||||
change = np.append(distance, np.array([width_ratio, height_ratio]))
|
||||
|
||||
# calculate euclidean distance of the change vector
|
||||
return np.linalg.norm(change)
|
||||
|
||||
|
||||
def frigate_distance(detection: Detection, tracked_object) -> float:
|
||||
return distance(detection.points, tracked_object.estimate)
|
||||
|
||||
|
||||
class NorfairTracker(ObjectTracker):
|
||||
def __init__(self, config: DetectConfig):
|
||||
self.tracked_objects = {}
|
||||
self.disappeared = {}
|
||||
self.positions = {}
|
||||
self.max_disappeared = config.max_disappeared
|
||||
self.detect_config = config
|
||||
self.track_id_map = {}
|
||||
# TODO: could also initialize a tracker per object class if there
|
||||
# was a good reason to have different distance calculations
|
||||
self.tracker = Tracker(
|
||||
distance_function=frigate_distance,
|
||||
distance_threshold=2.5,
|
||||
initialization_delay=0,
|
||||
hit_counter_max=self.max_disappeared,
|
||||
)
|
||||
|
||||
def register(self, track_id, obj):
|
||||
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
||||
id = f"{obj['frame_time']}-{rand_id}"
|
||||
self.track_id_map[track_id] = id
|
||||
obj["id"] = id
|
||||
obj["start_time"] = obj["frame_time"]
|
||||
obj["motionless_count"] = 0
|
||||
obj["position_changes"] = 0
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
self.positions[id] = {
|
||||
"xmins": [],
|
||||
"ymins": [],
|
||||
"xmaxs": [],
|
||||
"ymaxs": [],
|
||||
"xmin": 0,
|
||||
"ymin": 0,
|
||||
"xmax": self.detect_config.width,
|
||||
"ymax": self.detect_config.height,
|
||||
}
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
del self.disappeared[id]
|
||||
|
||||
# tracks the current position of the object based on the last N bounding boxes
|
||||
# returns False if the object has moved outside its previous position
|
||||
def update_position(self, id, box):
|
||||
position = self.positions[id]
|
||||
position_box = (
|
||||
position["xmin"],
|
||||
position["ymin"],
|
||||
position["xmax"],
|
||||
position["ymax"],
|
||||
)
|
||||
|
||||
xmin, ymin, xmax, ymax = box
|
||||
|
||||
iou = intersection_over_union(position_box, box)
|
||||
|
||||
# if the iou drops below the threshold
|
||||
# assume the object has moved to a new position and reset the computed box
|
||||
if iou < 0.6:
|
||||
self.positions[id] = {
|
||||
"xmins": [xmin],
|
||||
"ymins": [ymin],
|
||||
"xmaxs": [xmax],
|
||||
"ymaxs": [ymax],
|
||||
"xmin": xmin,
|
||||
"ymin": ymin,
|
||||
"xmax": xmax,
|
||||
"ymax": ymax,
|
||||
}
|
||||
return False
|
||||
|
||||
# if there are less than 10 entries for the position, add the bounding box
|
||||
# and recompute the position box
|
||||
if len(position["xmins"]) < 10:
|
||||
position["xmins"].append(xmin)
|
||||
position["ymins"].append(ymin)
|
||||
position["xmaxs"].append(xmax)
|
||||
position["ymaxs"].append(ymax)
|
||||
# by using percentiles here, we hopefully remove outliers
|
||||
position["xmin"] = np.percentile(position["xmins"], 15)
|
||||
position["ymin"] = np.percentile(position["ymins"], 15)
|
||||
position["xmax"] = np.percentile(position["xmaxs"], 85)
|
||||
position["ymax"] = np.percentile(position["ymaxs"], 85)
|
||||
|
||||
return True
|
||||
|
||||
def is_expired(self, id):
|
||||
obj = self.tracked_objects[id]
|
||||
# get the max frames for this label type or the default
|
||||
max_frames = self.detect_config.stationary.max_frames.objects.get(
|
||||
obj["label"], self.detect_config.stationary.max_frames.default
|
||||
)
|
||||
|
||||
# if there is no max_frames for this label type, continue
|
||||
if max_frames is None:
|
||||
return False
|
||||
|
||||
# if the object has exceeded the max_frames setting, deregister
|
||||
if (
|
||||
obj["motionless_count"] - self.detect_config.stationary.threshold
|
||||
> max_frames
|
||||
):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def update(self, track_id, obj):
|
||||
id = self.track_id_map[track_id]
|
||||
self.disappeared[id] = 0
|
||||
# update the motionless count if the object has not moved to a new position
|
||||
if self.update_position(id, obj["box"]):
|
||||
self.tracked_objects[id]["motionless_count"] += 1
|
||||
if self.is_expired(id):
|
||||
self.deregister(id)
|
||||
return
|
||||
else:
|
||||
# register the first position change and then only increment if
|
||||
# the object was previously stationary
|
||||
if (
|
||||
self.tracked_objects[id]["position_changes"] == 0
|
||||
or self.tracked_objects[id]["motionless_count"]
|
||||
>= self.detect_config.stationary.threshold
|
||||
):
|
||||
self.tracked_objects[id]["position_changes"] += 1
|
||||
self.tracked_objects[id]["motionless_count"] = 0
|
||||
|
||||
self.tracked_objects[id].update(obj)
|
||||
|
||||
def update_frame_times(self, frame_time):
|
||||
# if the object was there in the last frame, assume it's still there
|
||||
detections = [
|
||||
(
|
||||
obj["label"],
|
||||
obj["score"],
|
||||
obj["box"],
|
||||
obj["area"],
|
||||
obj["ratio"],
|
||||
obj["region"],
|
||||
)
|
||||
for id, obj in self.tracked_objects.items()
|
||||
if self.disappeared[id] == 0
|
||||
]
|
||||
self.match_and_update(frame_time, detections=detections)
|
||||
|
||||
def match_and_update(self, frame_time, detections):
|
||||
norfair_detections = []
|
||||
|
||||
for obj in detections:
|
||||
# centroid is used for other things downstream
|
||||
centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
|
||||
centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
|
||||
|
||||
# track based on top,left and bottom,right corners instead of centroid
|
||||
points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
|
||||
|
||||
norfair_detections.append(
|
||||
Detection(
|
||||
points=points,
|
||||
label=obj[0],
|
||||
data={
|
||||
"label": obj[0],
|
||||
"score": obj[1],
|
||||
"box": obj[2],
|
||||
"area": obj[3],
|
||||
"ratio": obj[4],
|
||||
"region": obj[5],
|
||||
"frame_time": frame_time,
|
||||
"centroid": (centroid_x, centroid_y),
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
tracked_objects = self.tracker.update(detections=norfair_detections)
|
||||
|
||||
# update or create new tracks
|
||||
active_ids = []
|
||||
for t in tracked_objects:
|
||||
active_ids.append(t.global_id)
|
||||
if t.global_id not in self.track_id_map:
|
||||
self.register(t.global_id, t.last_detection.data)
|
||||
# if there wasn't a detection in this frame, increment disappeared
|
||||
elif t.last_detection.data["frame_time"] != frame_time:
|
||||
id = self.track_id_map[t.global_id]
|
||||
self.disappeared[id] += 1
|
||||
# else update it
|
||||
else:
|
||||
self.update(t.global_id, t.last_detection.data)
|
||||
|
||||
# clear expired tracks
|
||||
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
||||
for e_id in expired_ids:
|
||||
self.deregister(self.track_id_map[e_id])
|
||||
del self.track_id_map[e_id]
|
||||
|
||||
def debug_draw(self, frame, frame_time):
|
||||
active_detections = [
|
||||
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||
for obj in self.tracker.tracked_objects
|
||||
if obj.last_detection.data["frame_time"] == frame_time
|
||||
]
|
||||
missing_detections = [
|
||||
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
||||
for obj in self.tracker.tracked_objects
|
||||
if obj.last_detection.data["frame_time"] != frame_time
|
||||
]
|
||||
# draw the estimated bounding box
|
||||
draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
|
||||
# draw the detections that were detected in the current frame
|
||||
draw_boxes(frame, active_detections, color="blue", draw_ids=True)
|
||||
# draw the detections that are missing in the current frame
|
||||
draw_boxes(frame, missing_detections, color="red", draw_ids=True)
|
||||
|
||||
# draw the distance calculation for the last detection
|
||||
# estimate vs detection
|
||||
for obj in self.tracker.tracked_objects:
|
||||
ld = obj.last_detection
|
||||
# bottom right
|
||||
text_anchor = (
|
||||
ld.points[1, 0],
|
||||
ld.points[1, 1],
|
||||
)
|
||||
frame = Drawer.text(
|
||||
frame,
|
||||
f"{obj.id}: {str(obj.last_distance)}",
|
||||
position=text_anchor,
|
||||
size=None,
|
||||
color=(255, 0, 0),
|
||||
thickness=None,
|
||||
)
|
@ -19,7 +19,8 @@ from frigate.const import CACHE_DIR
|
||||
from frigate.log import LogPipe
|
||||
from frigate.motion import MotionDetector
|
||||
from frigate.object_detection import RemoteObjectDetector
|
||||
from frigate.objects import ObjectTracker
|
||||
from frigate.track import ObjectTracker
|
||||
from frigate.track.norfair_tracker import NorfairTracker
|
||||
from frigate.util import (
|
||||
EventsPerSecond,
|
||||
FrameManager,
|
||||
@ -472,7 +473,7 @@ def track_camera(
|
||||
name, labelmap, detection_queue, result_connection, model_config, stop_event
|
||||
)
|
||||
|
||||
object_tracker = ObjectTracker(config.detect)
|
||||
object_tracker = NorfairTracker(config.detect)
|
||||
|
||||
frame_manager = SharedMemoryFrameManager()
|
||||
|
||||
@ -847,6 +848,17 @@ def process_frames(
|
||||
else:
|
||||
object_tracker.update_frame_times(frame_time)
|
||||
|
||||
# debug tracking by writing frames
|
||||
if False:
|
||||
bgr_frame = cv2.cvtColor(
|
||||
frame,
|
||||
cv2.COLOR_YUV2BGR_I420,
|
||||
)
|
||||
object_tracker.debug_draw(bgr_frame, frame_time)
|
||||
cv2.imwrite(
|
||||
f"debug/frames/track-{'{:.6f}'.format(frame_time)}.jpg", bgr_frame
|
||||
)
|
||||
|
||||
# add to the queue if not full
|
||||
if detected_objects_queue.full():
|
||||
frame_manager.delete(f"{camera_name}{frame_time}")
|
||||
|
@ -10,13 +10,13 @@ import click
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
sys.path.append("/lab/frigate")
|
||||
sys.path.append("/workspace/frigate")
|
||||
|
||||
from frigate.config import FrigateConfig # noqa: E402
|
||||
from frigate.motion import MotionDetector # noqa: E402
|
||||
from frigate.object_detection import LocalObjectDetector # noqa: E402
|
||||
from frigate.object_processing import CameraState # noqa: E402
|
||||
from frigate.objects import ObjectTracker # noqa: E402
|
||||
from frigate.track.centroid_tracker import CentroidTracker # noqa: E402
|
||||
from frigate.util import ( # noqa: E402
|
||||
EventsPerSecond,
|
||||
SharedMemoryFrameManager,
|
||||
@ -108,7 +108,7 @@ class ProcessClip:
|
||||
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
|
||||
motion_detector.save_images = False
|
||||
|
||||
object_tracker = ObjectTracker(self.camera_config.detect)
|
||||
object_tracker = CentroidTracker(self.camera_config.detect)
|
||||
process_info = {
|
||||
"process_fps": mp.Value("d", 0.0),
|
||||
"detection_fps": mp.Value("d", 0.0),
|
||||
@ -248,7 +248,7 @@ def process(path, label, output, debug_path):
|
||||
clips.append(path)
|
||||
|
||||
json_config = {
|
||||
"mqtt": {"host": "mqtt"},
|
||||
"mqtt": {"enabled": False},
|
||||
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
|
||||
"cameras": {
|
||||
"camera": {
|
||||
@ -282,7 +282,7 @@ def process(path, label, output, debug_path):
|
||||
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
|
||||
|
||||
frigate_config = FrigateConfig(**json_config)
|
||||
runtime_config = frigate_config.runtime_config
|
||||
runtime_config = frigate_config.runtime_config()
|
||||
runtime_config.cameras["camera"].create_ffmpeg_cmds()
|
||||
|
||||
process_clip = ProcessClip(c, frame_shape, runtime_config)
|
||||
|
@ -19,6 +19,7 @@ types-PyYAML == 6.0.*
|
||||
requests == 2.30.*
|
||||
types-requests == 2.28.*
|
||||
scipy == 1.10.*
|
||||
norfair == 2.2.*
|
||||
setproctitle == 1.3.*
|
||||
ws4py == 0.5.*
|
||||
# Openvino Library - Custom built with MYRIAD support
|
||||
|
Loading…
Reference in New Issue
Block a user